精英家教网 > 初中数学 > 题目详情
精英家教网在正方形ABCD中,已知AB=6,点E在边CD上,且DE:CE=1:2,如图.点F在CB的延长线上,如果△ADE与点C、E、F所组成的三角形相似,那么CF=
 
分析:首先由四边形ABCD是正方形,可得∠D=∠C=90°,AD=DC=AB=6;又由DE:CE=1:2,可求得DE与EC的长;再从△ADE∽△ECF与△ADE∽△FCE入手分析,利用相似三角形的对应边成比例,即可求得CF的长.
解答:精英家教网解:如图:
∵四边形ABCD是正方形,AB=6,
∴∠D=∠C=90°,AD=DC=AB=6,
∵DE:CE=1:2,
∴DE=2,CE=4;
∵△ADE∽△FCE,
AD
CF
=
DE
EC

6
CF
1
2

∴CF=12.
故答案为:12.
点评:此题考查了相似三角形的判定与性质与正方形的性质.注意此题的答案不唯一,解题的时候小心别漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图所示,在正方形ABCD中,E为AD的中点,F为DC上的一点,且DF=
14
DC.求证:△BEF是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黑河)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN
(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明.
(2)如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=
1
2
∠ABC,试探究线段MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.

查看答案和解析>>

同步练习册答案