精英家教网 > 初中数学 > 题目详情
已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连接ON、NP.下列结论:①四边形ANPD是梯形;②ON=NP;③PA为∠NPD的平分线.其中一定成立的是( )

A.①②
B.②③
C.①③
D.①
【答案】分析:①根据切线长定理,运用比例线段判断AD∥NP;
②没有依据;
③根据AD=DP,AD∥NP求解.
解答:解:①因为DA、DP、CP、CB为⊙O切线,故DA⊥AB,CB⊥AB.
于是AD∥BC,AD=DP,CB=CP.
由于△AND∽△CNB,所以==
故NP∥AD,四边形ANPD是梯形;
②不能确定;
③因为DA=DP,所以∠DAP=∠DPA.
因为NP∥AD,所以∠NPA=∠DAP.
所以∠DPA=∠NPA.
PA为∠NPD的平分线.
故选C.
点评:此题难度较大,综合考查了相似三角形的性质,切线的性质及平行线分线段成比例定理,对同学们的推理能力有较高要求.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A,B),过点P作半圆O的切线分别交过A,B两点的切线于D,C,AC、BD相交于N点,连接ON、NP.下列结论:①四边形ANPD是梯形;②ON=NP;③DP•PC为定值;④PA为∠NPD的平分线.其中一定成立的是(  )
A、①②B、②④C、①③④D、②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连接ON、NP.下列结论:①四边形ANPD是梯形;②ON=NP;③PA为∠NPD的平分线.其中一定成立的是(  )
A、①②B、②③C、①③D、①

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,连接OC、BP,过点O作OM∥CD分别交BC与BP于点M、N.下列结论:
①S四边形ABCD=
1
2
AB•CD;
②AD=AB;
③AD=ON;
④AB为过O、C、D三点的圆的切线.
其中正确的个数有(  )

查看答案和解析>>

科目:初中数学 来源:2011-2012学年部分学校九年级下学期联考数学卷 题型:选择题

已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C, AC、BD相交于N点,连结ON、NP,下列结论:①四边形ANPD是梯形;  ② ON=NP;    ③ DP·PC为定值; ④PA为∠NPD的平分线.其中一定成立的是(       )

A. ①②③      B.②③④     C. ①③④     D. ①④

 

查看答案和解析>>

同步练习册答案