精英家教网 > 初中数学 > 题目详情
有一座抛物线型拱桥(如图),正常水位时桥下河面宽20m,河面距拱顶4m.
(1)在如图所示的平面直角坐标系中,求出抛物线解析式;
(2)为了保证过往船只顺利航行,桥下水面的宽度不得小于18m.求水面在正常水位基础上涨多少m时,就会影响过往船只?
(1)∵抛物线顶点坐标是(0,4),
∴设抛物线解析式为:y=ax2+4,
∵正常水位时桥下河面宽20m,在如图所示的平面直角坐标系中,
∴B点坐标为:(10,0),
把B(10,0)代入得100a+4=0,
解得:a=-
1
25

∴y=-
1
25
x2+4;

(2)∵桥下水面的宽度不得小于18m,
∴当x=9时,得出y的值,
把x=9代入y=-
1
25
x2+4中得:y=-
1
25
×81+4=
19
25

∴水面在正常水位基础上涨
19
25
米时,就会影响过往船只.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的关系解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QDAC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),△AOB绕O点按逆时针方向旋转90°得到△COD.
(1)求C、D两点的坐标;
(2)求经过C、D、B三点的抛物线的解析式;
(3)设(2)中的抛物线的顶点为P,AB的中点为M,试判断△PMB是钝角三角形、直角三角形还是锐角三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将该抛物线向下平移m个单位,使顶点落在线段AO上,请直接写出相应的m值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

草莓是对蔷薇科草莓属植物的通称,属多年生草本植物,草莓的外观呈心形,鲜美红嫩,果肉多汁,含有特殊的浓郁水果芳香,草莓营养价值高,含丰富维生素C,有帮助消化的功效,与此同时,草莓还可以巩固齿龈,清新口气,润泽喉部.我市某草莓种植基地去年第x个月种植草莓的亩数y(亩),与x(1≤x≤12,且x为整数)之间的函数关系如表:
月份x123456789101112
13种植某数y6810121416161616161616
每亩收益z(元)与月份x(月)(1≤x≤12,且x为整数)之间存在如图所示的变化趋势:
(1)请观察题中的表格,用所学过的一次函数,反比例函数或二次函数的有关知识,直接写出y与x之间的函数关系式,根据如图所示的变化趋势,直接写出z与x之间满足的函数关系式;
(2)该草莓种植基地在去年哪个月的总收益最大,求出这个最大收益;
(3)今年1月份,该草莓种植基地加大规模,种植草莓比去年12月份多4亩,每亩收益比去年12月份多a%,今年2月份,该草莓种植基地继续加大规模,种植草莓比今年1月份多2a%,每亩收益比今年1月份多6元,若今年2月份该草莓种植基地总收益为672元,请你参考以下数据,通过计算估算出a的整数值.(参考数据:
63
=7.94,
65
=8.06,
66
=8.12)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线与x轴交于点A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3).以AB为直径作⊙M,过抛物线上一点P作⊙M的切线PD,切点为D,并与⊙M的切线AE相交于点E,连接DM并延长交⊙M于点N,连接AN、AD.
(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;
(2)若四边形EAMD的面积为4
3
,求直线PD的函数关系式;
(3)抛物线上是否存在点P,使得四边形EAMD的面积等于△DAN的面积?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC=1,∠A=45°,边长为1的正方形的一个顶点D在边AC上,与△ABC另两边分别交于点E、F,DEAB,将正方形平移,使点D保持在AC上(D不与A重合),设AF=x,正方形与△ABC重叠部分的面积为y.
(1)求y与x的函数关系式并写出自变量x的取值范围;
(2)x为何值时y的值最大?
(3)x在哪个范围取值时y的值随x的增大而减小?

查看答案和解析>>

同步练习册答案