精英家教网 > 初中数学 > 题目详情
如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
(1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(-2,0),B(-3,3),O(0,0)可得
4a-2b+c=0
9a-3b+c=3
c=0

解得
a=1
b=2
c=0

故抛物线的解析式为y=x2+2x;

(2)①当AO为边时,
∵A、O、D、E为顶点的四边形是平行四边形,
∴DE=AO=2,
则D在x轴下方不可能,
∴D在x轴上方且DE=2,
则D1(1,3),D2(-3,3);
②当AO为对角线时,则DE与AO互相平分,
∵点E在对称轴上,对称轴为直线x=-1,
由对称性知,符合条件的点D只有一个,与点C重合,即D3(-1,-1)
故符合条件的点D有三个,分别是D1(1,3),D2(-3,3),D3(-1,-1);

(3)存在,
如图:∵B(-3,3),C(-1,-1),根据勾股定理得:
BO2=18,CO2=2,BC2=20,
∴BO2+CO2=BC2
∴△BOC是直角三角形.
假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似,
设P(x,y),由题意知x>0,y>0,且y=x2+2x,
①若△AMP△BOC,则
AM
BO
=
PM
CO

即 x+2=3(x2+2x)
得:x1=
1
3
,x2=-2(舍去).
当x=
1
3
时,y=
7
9
,即P(
1
3
7
9
).
②若△PMA△BOC,则
AM
CO
=
PM
BO

即:x2+2x=3(x+2)
得:x1=3,x2=-2(舍去)
当x=3时,y=15,即P(3,15).
故符合条件的点P有两个,分别是P(
1
3
7
9
)或(3,15).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知平面直角坐标系xOy,一次函数y=
3
4
x+3
的图象与y轴交于点A,点M在正比例函数y=
3
2
x的
图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A,M.求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.
(1)如图1,在OA上选取一点G,将△COG沿CG翻折,使点O落在BC边上,记为E,求折痕y1所在直线的解析式;
(2)如图2,在OC上选取一点D,将△AOD沿AD翻折,使点O落在BC边上,记为E'.
①求折痕AD所在直线的解析式;
②再作E'FAB,交AD于点F.若抛物线y=-
1
12
x2+h过点F,求此抛物线的解析式,并判断它与直线AD的交点的个数.
(3)如图3,一般地,在OC、OA上选取适当的点D'、G',使纸片沿D'G'翻折后,点O落在BC边上,记为E''.请你猜想:折痕D'G'所在直线与②中的抛物线会有什么关系?用(1)中的情形验证你的猜想.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线的顶点坐标是(
5
2
,-
9
8
)
,且经过点A(8,14).
(1)求该抛物线的解析式;
(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;
(3)设点P是x轴上的任意一点,分别连接AC、BC.试判断:PA+PB与AC+BC的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与y轴的负半轴相交于点C,点C的坐标为(0,-3),且BO=CO.
(1)求出B点坐标和这个二次函数的解析式;
(2)求出y随x的增大而减小的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种______棵橘子树,橘子总个数最多.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某施工单位计划用地砖铺设正方形广场地面ABCD(如图所示),广场四角白色区域为正方形,阴影部分为四个矩形,四个矩形的宽都等于正方形的边长,阴影部分铺绿色地砖,其余部分铺白色地砖.已知
AB=100m,设小正方形的边长为xm.
(1)铺绿色地砖的面积为______m2;铺白色地砖的面积为______m2(用含x的代数式表示);
(2)若铺绿色地砖的费用为每平方米20元,铺白色地砖的费用为每平方米30元,设铺广场地面的总费用为y元,求y关于x的函数解析式,并求所需的最低费用.

查看答案和解析>>

同步练习册答案