精英家教网 > 初中数学 > 题目详情

【题目】盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是 ;若往盒中再放进1个黑球,这时取得黑球的概率变为
(1)填空:x= , y=
(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?

【答案】
(1)2;3
(2)解:画树状图得:

∵共有20种等可能的结果,两球颜色相同的有8种情况,颜色不同的有12种情况,

∴P(小王胜)= = ,P(小林胜)= =


【解析】解:(1)根据题意得:
解得:
所以答案是:2,3;
【考点精析】掌握列表法与树状图法和概率公式是解答本题的根本,需要知道当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣3,0),与反比例函数y= 在第一象限的图象交于点B(3,m),连接BO,若△AOB面积为9,

(1)求反比例函数的表达式和直线AB的表达式;
(2)若直线AB与y轴交于点C,求△COB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形纸片 ABC 中,AB=15cm,AC=9cm,BC=12cm, 现将边 AC 沿过点 A 的直线折叠,使它落在 AB 边上.若折痕交 BC 于点 D,点 C 落在点 E 处,你能求出 BD 的长吗?请写出求解过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为(
A.1
B.2
C.12 ﹣6
D.6 ﹣6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣4,2)、(1,﹣4),且ADx轴,交y轴于M点,ABx轴于N.

(1)求B、D两点坐标和长方形ABCD的面积;

(2)一动点PA出发(不与A点重合),以个单位/秒的速度沿ABB点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、MPO、PON之间的数量关系;

(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的?若存在,求t的值并求此时点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;

(1)使三角形的三边长分别为2,3,

(在图中画出一个既可);

(2)请在数轴上作出的对应点

(2)如图①,A,B,C是三个格点(即小正方形的顶点),判断ABBC的位置关系,并说明理由;

(3)如图②,连接三格和两格的对角线,求∠α+β的度数(要求:画出示意图,并说明理由).

  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形;
(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BAD=BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C=90°,BC=15,斜边AB的垂直平分线与∠CAB的平分线都交BCD点,则点D到斜边AB的距离为___________.

查看答案和解析>>

同步练习册答案