精英家教网 > 初中数学 > 题目详情

如图,已知AB是⊙O直径,AC是⊙O弦,点D是数学公式的中点,弦DE⊥AB,垂足为F,DE交AC于点G.
(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;
(2)在满足第(2)问的条件下,已知AF=3,FB=数学公式,求AG与GM的比.

解:(1)ME=MG成立,理由如下:
如图,连接EO,并延长交⊙O于N,连接BC;
∵AB是⊙O的直径,且AB⊥DE,

∵点D是的中点,


,即AC=DE,∠N=∠B;
∵ME是⊙O的切线,
∴∠MEG=∠N=∠B,
又∵∠B=90°-∠GAF=∠AGF=∠MGE,
∴∠MEG=∠MGE,故ME=MG.

(2)由相交弦定理得:DF2=AF•FB=3×=4,即DF=2;
故DE=AC=2DF=4;
∵∠FAG=∠CAB,∠AFG=∠ACB=90°,
∴△AFG∽△ACB,
,即
解得AG=,GC=AC-AG=
设ME=MG=x,则MC=x-,MA=x+
由切割线定理得:ME2=MC•MA,即x2=(x-)(x+),
解得MG=x=
∴AG:MG==10:3,即AG与GM的比为
分析:(1)连接OE,并延长EO交⊙O于N,连接DN;由于ME是⊙O的切线,则∠MEG=∠N,而∠MGE=∠AGF,易证得∠AGF=∠B,即∠MGE=∠B,若证ME=MG,关键就是证得∠N=∠B;可从题干入手:点D是弧ABC的中点,则弧AD=弧DBC=弧AE,所以弧DBE=弧AEC,即AC=DE,由此可证得∠N=∠B,即可得到∠MGE=∠MEG,根据等角对等边即可得证.
(2)根据相交弦定理可求得DF、EF的长,即可得到DE、AC的长,易证得△AFG∽△ACB,根据所得比例线段即可求得AG、GC的长,再由(1)证得ME=MG,可用MG分别表示出MA、MC的长,进而根据切割线定理求出MG的长,有了AG、MG的值,那么它们的比例关系就不难求出.
点评:此题是一道圆的综合题,涉及到:切线的性质、圆周角定理、相交弦定理、弦切角定理、切割线定理等重要知识点,综合性强,难度较大,能够发现AC、DE的等量关系是解答此题的关键所在.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC是弦,D为AB延长线上一点,DC=AC,∠ACD=120°,BD=10.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)求扇形BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE于点E,过点D作DF⊥AC,交AC的延长线于点F.
(1)求证:DF是⊙O的切线;
(2)若DF=3,DE=2
①求
BEAD
值;
②求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
EB
的中点,则下列结论不成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.
求证:PA为⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB是圆O的直径,∠DAB的平分线AC交圆O与点C,作CD⊥AD,垂足为点D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为圆O的切线.
(2)当AB=2BE,DE=2
3
时,求AD的长.

查看答案和解析>>

同步练习册答案