精英家教网 > 初中数学 > 题目详情

二次函数的图象与x轴交于点A(-1, 0),与y轴交于点C(0,-5),且经过点D(3,-8).

(1)求此二次函数的解析式和顶点坐标;

(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.

 

【答案】

(1)y=x2-4x-5,(2,-9);

(2)先向左平移2个单位,再向上平移9个单位,得到的抛物线的解析式为y = x2

【解析】

试题分析:(1)将A,C,D点的坐标代入y=ax2+bx+c,即可得出得出二次函数的解析式与顶点坐标.

(2)要使平移后的抛物线顶点落在原点,根据得出的二次函数的顶点的形式,平移图象即可得出平移后的图象.

试题解析:

(1)由题意,有

解得

∴此二次函数的解析式为.

,顶点坐标为(2,-9).

(2)先向左平移2个单位,再向上平移9个单位,得到的抛物线的解析式为y = x2

考点:1.二次函数综合题;2.平移.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数的图象与x轴两交点间的距离为2,若将图象沿y轴方向向上平移3个单位,则图象恰好经过原点,且与x轴两交点间的距离为4,求原二次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数的图象与x轴的两交点的横坐标为1和-7,且经过点(-3,8).求:
(1)这个二次函数的解析式;
(2)试判断点A(-1,2)是否在此函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:一次函数y=-
12
x+2
的图象与x轴、y轴的交点分别为B、C,二次函数的关系式为y=ax2-3ax-4a(a<0).
(1)说明:二次函数的图象过B点,并求出二次函数的图象与x轴的另一个交点A的坐标;
(2)若二次函数图象的顶点,在一次函数图象的下方,求a的取值范围;
(3)若二次函数的图象过点C,则在此二次函数的图象上是否存在点D,使得△ABD是直角三角形?若存在,求出所有满足条件的点D坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知二次函数y=-x2+mx+n,当x=3时,有最大值4.
(1)求m、n的值.
(2)设这个二次函数的图象与x轴的交点是A、B,求A、B点的坐标;
(3)当y<0时,求x轴的取值范围;
(4)有一圆经过点A、B,且与y轴的正半轴相切于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c经过(-2,0)、(4,0)、(0,3)三点.
(1)求这条抛物线的解析式.
(2)怎样平移此抛物线,使该二次函数的图象与x轴只有一个交点?

查看答案和解析>>

同步练习册答案