精英家教网 > 初中数学 > 题目详情
已知:关于x的一元二次方程kx2+(2k-3)x+k-3=0有两个不相等实数根(k<0).
(1)用含k的式子表示方程的两实数根;
(2)设方程的两实数根分别是x1,x2(其中x1>x2),若一次函数y=(3k-1)x+b与反比例函数y=
bx
的图象都经过点(x1,kx2),求一次函数与反比例函数的解析式.
分析:根据根的判别式和求根公式,求出x的值.由x1<x2及k<0确定x1与x2的值,再把交点的坐标代入两个函数的解析式,求出k和b的值,从而得出函数的解析式.
解答:解:(1)∵kx2+(2k-3)x+k-3=0是关于x的一元二次方程.
∴△=(2k-3)2-4k(k-3)=9,
由求根公式,得
x=
(3-2k)±3
2k

∴x=-1或x=
3
k
-1

(2)∵k<0,∴
3
k
-1<-1

而x1>x2,∴x1=-1,x2=
3
k
-1

由题意得:
k(
3
k
-1)=1-3k+b
k(
3
k
-1)=
b
-1

解之,得
k=-5
b=-8

∴一次函数的解析式为y=-16x-8,反比例函数的解析式为y=
-8
x
点评:本题考查了根的判别式和用待定系数法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求证:方程①有两个实数根;
(2)求证:方程①有一个实数根为1;
(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:关于x的一元二次方程ax2+bx+c=3的一个根为x=2,且二次函数y=ax2+bx+c的对称轴是直线x=2,则抛物线的顶点坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2(m+1)x+m2=0有两个整数根,m<5且m为整数.
(1)求m的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2-2(m+1)x+m2的图象沿x轴向左平移4个单位长度,求平移后的二次函数图象的解析式;
(3)当直线y=x+b与(2)中的两条抛物线有且只有三个交点时,求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的一元二次方程x2-2x+c=0的一个实数根为3.
(1)求c的值;
(2)二次函数y=x2-2x+c,当-2<x≤2时,y的取值范围;
(3)二次函数y=x2-2x+c与x轴交于点A、B(A左B右),顶点为点C,问:是否存在这样的点P,以P为位似中心,将△ABC放大为原来的2倍后得到△DEF(即△EDF∽△ABC,相似比为2),使得点D、E恰好在二次函数上且DE∥AB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•延庆县二模)已知:关于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有实根,求m的取值范围;
(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根;
(3)在(2)的前提下,二次函数y=mx2-(2m+2)x+m-1与x轴有两个交点,连接这两点间的线段,并以这条线段为直径在x轴的上方作半圆P,设直线l的解析式为y=x+b,若直线l与半圆P只有两个交点时,求出b的取值范围.

查看答案和解析>>

同步练习册答案