精英家教网 > 初中数学 > 题目详情
14.下列计算正确的是(  )
A.a2+a2=2a4B.a2•a3=a6C.(a+1)2=a2+1D.(-a22=a4

分析 原式利用合并同类项法则,同底数幂的乘法,完全平方公式,幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.

解答 解:A、原式=2a2,错误;
B、原式=a5,错误;
C、原式=a2+2a+1,错误;
D、原式=a4,正确,
故选D.

点评 此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则及公式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.己知:直线y=$\frac{a-1}{a}$x+$\frac{1}{a}$不过第二象限,求a的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在直角△ABC中,∠ACB=90°,点E在AC边上,连结BE,作∠ACF=∠CBE交AB于点F,同时点D在BE上,且CD⊥AB.
(1)已知:如图,$\frac{AE}{CE}=1$,$\frac{AC}{BC}=1$.
①求证:△ACF≌△BCD.
②求$\frac{CF}{DE}$的值.
(2)若$\frac{AE}{CE}=2$,$\frac{AC}{BC}=2$,则$\frac{CF}{DE}$的值是多少(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=$\frac{n}{x}$的图象在第四象限的相交于点P,并且PA⊥y轴于点A,已知A (0,-6),且S△CAP=18.
(1)求上述一次函数与反比例函数的表达式;
(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,已知点P是抛物线y=x2上的动点(点P在第一象限内),连结OP,过点O作OP的垂线交抛物线于另一点Q,当点P的横坐标是2时,点Q的坐标是(-$\frac{1}{2}$,$\frac{1}{4}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,直线y=2x+3与反比例函数y=$\frac{k}{x}$的图象相交于点B(a,5),且与x轴相交于点A.
(1)求反比例函数的表达式.
(2)若P为y轴上的点,且△BOP的面积是△AOB的面积的$\frac{1}{3}$,请求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,△ABD内接于⊙O,点C在线段AD上,AC=2CD,点E在$\widehat{BD}$上,∠ECD=∠ABD,EC=1,则AE等于(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在⊙0中,$\widehat{AB}$=$\widehat{AC}$,∠ACB=60°.
(1)求证:∠A0B=∠BOC=∠AOC;
(2)若D是$\widehat{AB}$的中点,求证:四边形0ADB是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如果关于x,y的方程组$\left\{\begin{array}{l}{2x-y=10}\\{3x+y=5a}\end{array}\right.$的解满足x>0且y<0,请确定实数a的取值范围.

查看答案和解析>>

同步练习册答案