精英家教网 > 初中数学 > 题目详情
13、已知:如图,圆外切等腰梯形的中位线长为12cm,则梯形的周长=
48
cm.
分析:由于⊙O内切于梯形ABCD,可根据切线长定理求得上下底的和与两腰长的和的关系,然后再根据梯形中位线定理求得梯形的周长.
解答:解:如图;
∵⊙O内切于梯形ABCD,且切点分别为G、N、H、M,
∴AM=AG,DM=DH,CH=CN,BN=BG;
∴AD+BC=AB+CD;
∵EF是梯形的中位线,且EF=12cm,
∴AD+BC=2EF=24cm,
∴梯形的周长为:AD+BC+AB+CD=2(AD+BC)=48cm.
点评:此题主要考查的是切线长定理及梯形的中位线定理;能够正确的求出等腰梯形两腰的长与上下底之间的关系,是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.
(Ⅰ)如图①,若半径为r1的⊙O1是Rt△ABC的内切圆,求r1
(Ⅱ)如图②,若半径为r2的两个等圆⊙O1、⊙O2外切,且⊙O1与AC、AB相切,⊙O2与BC、AB相切,求r2
(Ⅲ)如图③,当n大于2的正整数时,若半径rn的n个等圆⊙O1、⊙O2、…、⊙On依次外切,且⊙O1与AC、BC相切,⊙On与BC、AB相切,⊙O1、⊙O2、⊙O3、…、⊙On-1均与AB边相切,求rn精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠围墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD.已知木栏总长为120米,设AB边的长为x米,长方形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).当x为何值时,S取得最值(请指出是最大值还是最小值)?并求出这个最值;
(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆,其圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(l)中S取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•嘉定区二模)已知⊙O1、⊙O2外切于点T,经过点T的任一直线分别与⊙O1、⊙O2交于点A、B,
(1)若⊙O1、⊙O2是等圆(如图1),求证:AT=BT;
(2)若⊙O1、⊙O2的半径分别为R、r(如图2),试写出线段AT、BT与R、r之间始终存在的数量关系(不需要证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等边△ABC边长为a,D、E分别为AB、AC边上的动点,且在运动时保持DE∥BC,如图(1),⊙O1与⊙O2都不在△ABC的外部,且⊙O1、⊙O2分别与∠B和∠C的两边及DE都相切,其中和DE、BC的切点分别为M、N、M′、N′.
(1)求证:⊙O1和⊙O2是等圆;
(2)设⊙O1的半径长为x,圆心距O1O2为y,求y与x的函数关系式,并写出x的取值范围;
(3)当⊙O1与⊙O2外切时,求x的值;
(4)如图(2),当D、E分别是AB、AC边的中点时,将⊙O2先向左平移至和⊙O1重合,然后将重合后的圆沿着△ABC内各边按图(2)中箭头的方向进行滚动,且总是与△ABC的边相切,当点O1第一次回到它原来的位置时,求点O1经过的路线长度?
精英家教网

查看答案和解析>>

科目:初中数学 来源:数学教研室 题型:044

已知:如图,两等圆O1O2外切,AB为外公切线, AB分别为切点.若O2A=5cm,求AB的长.

 

查看答案和解析>>

同步练习册答案