【题目】在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.
(1)求点C的坐标;
(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.
【答案】
(1)解:∵直线y=2x﹣3与y轴交于点A(0,﹣3),
∴点A关于x轴的对称点B(0,3),l为直线y=3,
∵直线y=2x﹣3与直线l交于点C,
∴点C坐标为(3,3),
(2)解:∵抛物线y=nx2﹣4nx+5n(n>0),
∴y=nx2﹣4nx+4n+n=n(x﹣2)2+n(n>0)
∴抛物线的对称轴为直线x=2,顶点坐标为(2,n),
∵点B(0,3),点C(3,3),
①当n>3时,抛物线的最小值为n>3,与线段BC无公共点;
②当n=3时,抛物线的顶点为(2,3),在线段BC上,此时抛物线与线段BC有一个公共点;
③当0<n<3时,抛物线最小值为n,与线段BC有两个公共点;
如果抛物线y=n(x﹣2)2+n经过点B,则3=5n,解得n= ,
由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3),
点(4,3)不在线段BC上,此时抛物线与线段BC有一个公共点B;
如果抛物线y=n(x﹣2)2+n经过点C,则3=2n,解得n= ,
由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3),
点(1,3)在线段BC上,此时抛物线与线段BC有两个公共点;
综上所述,当 ≤n< 或n=3时,抛物线与线段BC有一个公共点.
【解析】(1)根据题意分别求出点A、B、C的坐标;(2)求得抛物线的对称轴,顶点的坐标;再分类讨论①当n>3时;②当n=3时;③当0<n<3时,抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.
【考点精析】通过灵活运用一次函数的性质和二次函数的性质,掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AE是高,AF是△ABC外角∠CAD的平分线.
(1)用尺规作图:作∠AEC的平分线EN(保留作图痕迹,不写作法和证明);
(2)设EN与AF交于点M,判断△AEM的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在等腰直角三角形BCD中,∠BDC=90°, BF平分∠DBC,与CD相交于点F,延长BD到A,使DA=DF.
(1)求证:△FBD≌△ACD;
(2)延长BF交AC于点E,且BE⊥AC,求证:CE=BF;
(3)在(2)的条件下,H是BC边的中点,连接DH,与BE相交于点G,如图②. 试探索CE,GE,BG之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以x为自变量的二次函数y=﹣x2+(2m+2)x﹣(m2+4m﹣3)中,m为不小于0的整数,它的图象与x轴的交点A在原点左边,交点B在原点右边.
(1)求这个二次函数的解析式;
(2)设点C为此二次函数图象上的一点,且满足△ABC的面积等于10,请求出点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为( )
A.
B.
C.
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AC,BD为对角线,AB=BC=AC=BD,则∠ADC的大小为( )
A. 120°B. 135°C. 145°D. 150°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com