精英家教网 > 初中数学 > 题目详情
如图,给出下列论断:

(1)AB∥DC;
(2)AD∥BC;
(3)∠A+∠B=180°;
(4)∠B+∠C=180°,以其中一个作为题设,一个作为结论,写出一个真命题.想一想,若连接BD,你能自已写出一个真命题吗?试写出—个真命题并写出推理过程.
见解析
本题考查的是平行线的判定与性质
根据平行线的性质:两直线平行,同旁内角互补,得到:若(1)AB∥DC则有(4)∠B+∠C=180;由(2)AD∥BC可以得到(3)∠A+∠B=180°.反之,根据平行线的判定,也成立.连接BD,则BD截AD和BC,因而可以得到:若AD∥BC,则可以得到∠ADB=∠DBC.
以一个作题设,一个作结论,写出一个真命题是:若AB∥DC则有∠B+∠C=180;
若连接BD,写出一个真命题是:若AD∥BC,则可以得到∠ADB=∠DBC.
证明:∵AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,∠1和∠2是内错角的是:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

△ABC中,点O为∠ABC和∠ACB角平分线交点,则∠BOC与∠A的关系是(  )
A.∠BOC=2∠AB.∠BOC=180°∠A
C.∠BOC=90°+∠AD.∠BOC=90°+∠A

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线 求的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,下列说法正确的是(   )
A.若AB∥CD,则∠1=∠2B.若AD∥BC,则∠3=∠4
C.若∠1=∠2,则AB∥CDD.若∠1=∠2,则AD∥BC

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列结论中,不正确的是
A.两点确定一条直线B.两点之间,直线最短
C.等角的余角相等D.两直线和第三条直线都平行,则这两直线也平行

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,如果平分相等吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于(   )
A.30°B.40°C.60°D.70°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:∠AOB,求作射线OC,使OC平分∠AOB,作图的合理顺序是    (  )
①作射线OC;②在OA和OB上,分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于DE为半径作弧,在∠AOB内两弧交于点G
A.①②③    B.②①③    C.②③①   D.③②①

查看答案和解析>>

同步练习册答案