精英家教网 > 初中数学 > 题目详情
△ABC中,AB=2,BC=4,CD⊥AB于D。
(1)如图①,AE⊥BC于E,求证:CD=2AE;
(2)如图②,P是AC上任意一点(P不与A、C重合),过P作PE⊥BC于E,PF?AB于F,求证:2PE+PF=CD;
(3)在(2)中,若P为AC的延长线上任意一点,其它条件不变,请你在备用图中画出图形,并探究线段PE、PF、CD之间的数量关系。
(1)证明:S△ABC=AB·CD=BC·AE,
∵AB=2,BC=4,
×2×CD=×4×AE,
即CD=2AE;
(2)证明:如图②,连接PB,
则S△ABC=S△ABP+S△BCP
AB·CD=AB·PF+BC·PE,
∵AB=2,BC=4,
×2×CD=×2×PF+×4×PE,
即CD=PF+2PE,
故2PE+PF=CD;
(3)解:如图③,连接PB,
则S△ABP=S△ABC+S△PBC
AB·PF=AB·CD+BC·PE,
∵AB=2,BC=4,
×2×PF=×2×CD+×4×PE,
即PF=CD+2PE。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,∠A=36°,
(1)用尺规作图的方法,过B点作∠ABC的平分线交AC于D(不写作法,保留作图痕迹);
(2)求证:BC=BD=AD;
(3)求证:AD2=AC•DC;
(4)设
CDDA
=x,求x.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,在△ABC中,AB=AC,点D,E在直线BC上运动.如果∠DAE=l05°,△ABD∽△ECA,则∠BAC=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网△ABC中,AB=AC,D、E分别是AB、AC的中点,若AB=4,BC=6,则△ADE的周长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

13、在△ABC中,AB=AC,BD是△ABC中线,已知△ABD和△BDC的周长之差为6,△ABC的周长是30,求这个等腰三角形的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在钝角△ABC中,AB=AC,以BC为直径作⊙O,⊙O与BA、CA的延长线分别交于D、E两点精英家教网,连接AO、BE、DC.
(1)求证:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度数.

查看答案和解析>>

同步练习册答案