【题目】如图,正方形中,,分别在边,上,,相交于点,若,,则__________.
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.
(1)求证:BC是∠ABE的平分线;
(2)若DC=8,⊙O的半径OA=6,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义: 在平面直角坐标系中,如果点和都在某函数的图象上,则称点是图象的一对“相关点”.例如,点和点是直线的一对相关点.
请写出反比例函数的图象上的一对相关点的坐标;
如图,抛物线的对称轴为直线,与轴交于点.
求抛物线的解析式:
若点是抛物线上的一对相关点,直线与轴交于点,点为抛物线上之间的一点,求面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.
(1)求支点D到滑轨MN的距离(精确到1厘米);
(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.
(1)如果cos∠DBC,求EF的长;
(2)当点F在边BC上时,连接AG,设AD=x,y,求y关于x的函数关系式并写出x的取值范围;
(3)连接CG,如果△FCG是等腰三角形,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过,,三点.
(1)求该抛物线的解析式;
(2)在直线上方的该抛物线上是否存在一点,使得的面积最大?若存在,求出点的坐标及面积的最大值;若不存在,请说明理由.
(3)是直线右侧的该抛物线上一动点,过作轴,垂足为,是否存在点,使得以、、为顶点的三角形与相似?若存在,请求出符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y(cm) | 0 | 1.0 | 2.0 | 3.0 | 2.7 | 2.7 | m | 3.6 |
经测量m的值是(保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.
(1)求证:∠PCE=∠PEC;
(2)若AB=10,ED=,sinA=,求PC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com