精英家教网 > 初中数学 > 题目详情
已知抛物线y=3ax2+2bx+c,
(Ⅰ)若a=b=1,c=-1,求该抛物线与x轴公共点的坐标;
(Ⅱ)若a=b=1,且当-1<x<1时,抛物线与x轴有公共点,求c的取值范围;
(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
【答案】分析:(Ⅰ)把a,b,c的值代入可得抛物线的解析式,求出两根即可;
(Ⅱ)把a,b代入解析式可得△=4-12c≥0,等于0时可直接求得c的值;求出y的相应的值后可得c的取值范围;
(Ⅲ)抛物线y=3ax2+2bx+c与x轴公共点的个数就是一元二次方程3ax2+2bx+c=0的实数根的个数,因此,本题的解答就是研究在不同的条件下一元二次方程3ax2+2bx+c=0根的判别式的符号,依据判别式的符号得出相应的结论.
解答:解:(Ⅰ)当a=b=1,c=-1时,抛物线为y=3x2+2x-1,
方程3x2+2x-1=0的两个根为x1=-1,
∴该抛物线与x轴公共点的坐标是(-1,0)和(,0);
(Ⅱ)当a=b=1时,抛物线为y=3x2+2x+c,且与x轴有公共点.
对于方程3x2+2x+c=0,判别式△=4-12c≥0,有c≤.(3分)
①当时,由方程3x2+2x+=0,解得x1=x2=-
此时抛物线为y=3x2+2x+与x轴只有一个公共点(-,0);(4分)
②当时,x1=-1时,y1=3-2+c=1+c;
x2=1时,y2=3+2+c=5+c.
由已知-1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为
应有
解得-5<c≤-1.
综上,或-5<c≤-1.(6分)
(Ⅲ)对于二次函数y=3ax2+2bx+c,
由已知x1=0时,y1=c>0;
x2=1时,y2=3a+2b+c>0,
又∵a+b+c=0,
∴3a+2b+c=(a+b+c)+2a+b=2a+b.
∴2a+b>0.
∵b=-a-c,
∴2a-a-c>0,即a-c>0.
∴a>c>0.(7分)
∵关于x的一元二次方程3ax2+2bx+c=0的判别式△=4b2-12ac=4(a+c)2-12ac=4[(a-c)2+ac]>0,
∴抛物线y=3ax2+2bx+c与x轴有两个公共点,顶点在x轴下方.(8分)
又该抛物线的对称轴
由a+b+c=0,c>0,2a+b>0,
得-2a<b<-a,

又由已知x1=0时,y1>0;
x2=1时,y2>0,观察图象,
可知在0<x<1范围内,该抛物线与x轴有两个公共点.(10分)
点评:借助图象,可将抽象的问题直观化;二次函数与x轴的交点的纵坐标为0;抛物线与x轴交点的个数就是一元二次方程根的个数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=ax2+3ax+b交x轴分别于A、B(1,0),交y轴于C(0,2).
(1)求此抛物线的解析式;
(2)如图(1),P为抛物线第三象限的点,若S△PAC=2S△PBC,求P点坐标;
(3)如图(2),D为抛物线的顶点,在抛物线上是否存在点Q,使△ADQ为锐角三角形?若存在,求出Q点横坐标的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2-3ax+4,
(1)求抛物线的对称轴;
(2)若抛物线与x轴交于A(-1,0)、B两点,且过第一象限上点D(m,m+1),求sin∠DAB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2-3ax+4,
(1)求抛物线的对称轴;
(2)若抛物线与x轴交于A(-1,0)、B两点,且过第一象限上点D(m,m+1),求sin∠DAB.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年福建省厦门市松柏中学九年级(上)期中数学试卷(解析版) 题型:解答题

已知抛物线y=ax2-3ax+4,
(1)求抛物线的对称轴;
(2)若抛物线与x轴交于A(-1,0)、B两点,且过第一象限上点D(m,m+1),求sin∠DAB.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省武汉市中考数学模拟试卷(13)(解析版) 题型:解答题

已知抛物线y=ax2+3ax+b交x轴分别于A、B(1,0),交y轴于C(0,2).
(1)求此抛物线的解析式;
(2)如图(1),P为抛物线第三象限的点,若S△PAC=2S△PBC,求P点坐标;
(3)如图(2),D为抛物线的顶点,在抛物线上是否存在点Q,使△ADQ为锐角三角形?若存在,求出Q点横坐标的取值范围.

查看答案和解析>>

同步练习册答案