精英家教网 > 初中数学 > 题目详情
精英家教网如图,∠BAC=90°,△ABC绕点A逆时针旋转得到△ADE,恰好点D在BC上,连接CE.
(1)∠BAE与∠DAC有何关系?并说明理由;
(2)△ABD与△ACE有何关系?并说明理由;
(3)线段BC与CE在位置上有何关系?为什么?
分析:(1)它们的关系应该是互补,根据旋转的性质知:∠BAC、∠DAE都是直角,可根据这个条件以及角之间的关系来判断.
(2)两角的关系是相等,首先由旋转的性质知:△ABD、△ACE是顶角相等的两个等腰三角形,它们的三个角对应相等,因此两个三角形相似.
(3)由(2)知:∠ACE=∠ADB=∠B,由于∠ACE、∠B互余,因此∠ACE、∠ACB互余,故两条线段互相垂直.
解答:解:(1)∠BAE与∠DAC互补;
理由如下:
由旋转的性质知:∠BAC=∠DAE=90°,
∴∠BAE=∠BAC+∠CAE=90°+(90°-∠DAC)=180°-∠DAC;
即∠BAE+∠DAC=180°,因此∠BAE、∠DAC互补.

(2)△ABD与△ACE相似;
理由如下:
由旋转的性质知:AB=AD,AC=AE,∠BAD=∠CAE;
即∠ADB=∠B=
1
2
(180°-∠BAD),∠ACE=∠AEC=
1
2
(180°-∠CAE),
即∠ADB=∠ACE=∠B=∠AEC;
因此△ABD∽△ACE.

(3)线段BC与CE互相垂直,
理由如下:
由(2)知:∠ACE=∠B;
∵∠B+∠ACB=90°,
∴∠ACB+∠ACE=90°,
即线段BC、CE互相垂直.
点评:此题主要考查的是旋转的性质,理解旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,∠BAC=90°,AD⊥BC,△ABE,△ACF都是等边三角形,则S△ABE:S△ACF等于(  )
A、AB:ACB、AD2:DC2C、BD2:DC2D、AC2:AB2

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,∠BAC=90°,AD⊥BC,则图中互余的角有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠BAC=90°,AC=AB,直线l与以AB为直径的圆相切于点B,点E是圆上异于A、B的任意一点.精英家教网直线AE与l相交于点D.
(1)如果AD=10,BD=6,求DE的长;
(2)连接CE,过E作CE的垂线交直线AB于F.当点E在什么位置时,相应的F位于线段AB上、位于BA的延长线上、位于AB的延长线上(写出结果,不要求证明).无论点E如何变化,总有BD=BF.请你就上述三种情况任选一种说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(任选做一题)
(1)如图,在平行四边形ABCD中,E是AD上的一点.求证:AE•OB=OE•CB;
精英家教网
(2)已知如图,∠BAC=90°,AD⊥BC,AE=EC,ED延长线交AB的延长线于点F.
求证:①△DBF∽△ADF;②
AB
AC
=
DF
AF

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠BAC=90°,∠C=30°,AD⊥BC于D,DE⊥AB于E,BE=1,BC=
8
8

查看答案和解析>>

同步练习册答案