精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的精英家教网左侧),过点A的直线y=kx+1交抛物线于点C(2,3).
(1)求直线AC及抛物线的解析式;
(2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积;
(3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.
分析:本题是一次函数,二次函数的综合题,充分利用两者之间图象的联系,解析式中待定系数的个数,先求一次函数解析式,再求二次函数解析式,根据题目的要求,对二次函数进行运用.在坐标系中求图形面积,可以充分利用图形的各顶点坐标的数值,确定图形的底、高,可把图形分割成几个规则图形的和或者差.
解答:解:(1)∵点C(2,3)在直线y=kx+1上,
∴2k+1=3.
解得k=1.
∴直线AC的解析式为y=x+1.
∵点A在x轴上,
∴A(-1,0).
∵抛物线y=-x2+bx+c过点A、C,
-1-b+c=0
-4+2b+c=3

解得
b=2
c=3

∴抛物线的解析式为y=-x2+2x+3.

(2)由y=-x2+2x+3=-(x-1)2+4,
可得抛物线的对称轴为x=1,B(3,0).精英家教网
∴E(1,2).
根据题意,知点A旋转到点B处,直线l过点B、E.
设直线l的解析式为y=mx+n.
将B、E的坐标代入y=mx+n中,
联立可得m=-1,n=3.
∴直线l的解析式为y=-x+3.
∴P(0,3).
过点E作ED⊥x轴于点D.
∴S△PAE=S△PAB-S△EAB=
1
2
AB•PO-
1
2
AB•ED=
1
2
×4×(3-2)=2.

(3)存在,点F的坐标分别为(3-
2
,0),(3+
2
,0),(-1-
6
,0)(-1+
6
,0).
点评:本题考查点的坐标的求法及一次函数,二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案