精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴精英家教网的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)若⊙P与x轴有公共点,则k的取值范围是
 

(2)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(3)当⊙P与直线l相切时,k的值为
 
分析:(1)P点在y轴的负半轴,且半径为3,由此可求k的取值范围;
(2)由勾股定理求PA,根据PA=PB列方程求k的值,判断⊙P与x轴的位置关系;
(3)过P点作PQ⊥AB,垂足为Q,根据△ABP的面积公式,利用面积法表示PQ,当⊙P与直线l相切时,PQ=3,列方程求k即可.
解答:精英家教网解:(1)依题意,得k的取值范围是-3≤k<0;

(2)由y=-2x-8得A(-4,0),B(0,-8),
由勾股定理,得PA=
16+k2

∵PB=8+k,
由PA=PB,得
16+k2
=8+k,
解得k=-3,
精英家教网∴⊙P与x轴相切;

(3)过P点作PQ⊥AB,垂足为Q,
由PQ×AB=PB×OA,
PQ=
(k+8)×4
42+82

当⊙P与直线l相切时,PQ=3,即
(k+8)×4
42+82
=3,
解得k=3
5
-8
当p在B下方时,k=-8-3
5

故答案为:-3≤k<0,3
5
-8或-8-3
5
点评:本题考查了一次函数的综合运用.关键是由已知直线求A、B两点坐标,根据P点的坐标,由线段相等,面积法分别列方程求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案