【题目】已知,数轴上点、对应的数分别为、,且满足,点对应点的数为-3.
(1)______,______;
(2)若动点、分别从、同时出发向右运动,点的速度为3个单位长度/秒;点的速度为1个单位长度/秒,求经过多长时间、两点的距离为;
(3)在(2)的条件下,若点运动到点立刻原速返回,到达点后停止运动,点运动至点处又以原速返回,到达点后又折返向运动,当点停止运动点随之停止运动.求在整个运动过程中,两点,同时到达的点在数轴上表示的数.
【答案】(1)-7,1.(2)经过秒或秒,两点的距离为.(3)在整个运动过程中,两点,同时到达的点在数轴上表示的数分别是-1,0,-2.
【解析】
(1)由绝对值和偶次方的非负性列方程组可解;
(2)设经过t秒两点的距离为,根据题意列绝对值方程求解即可;
(3)分类讨论:点P未运动到点C时;点P运动到点C返回时;当点P返回到点A时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.
(1)由非负数的性质可得:,
∴,,
故答案为:-7,1;
(2)设经过秒两点的距离为,
由题意得:,
解得或,
答:经过秒或秒,两点的距离为;
(3)点未运动到点时,设经过秒,相遇,
由题意得:,
∴,
表示的数为:,
点运动到点返回时,设经过秒,相過,
由题意得:,
∴,
表示的数是:,
当点返回到点时,用时秒,此时点所在位置表示的数是,
设再经过秒相遇,
由题意得:,
∴,
表示的数是:,
答:在整个运动过程中,两点,同时到达的点在数轴上表示的数分别是-1,0,-2.
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
问题:如图1,在平行四边形ABCD中,E是AD上一点,AE=AB,∠EAB=60°,过点E作直线EF,在EF上取一点G.使得∠EGB=∠EAB,连接AG.
求证:EG=AG+BG.
小明同学的思路是:作∠CAM=∠EAB交CE于点H,构造全等三角形,经过推理解决问题.
参考小明同学的思路,探究并解决下列问题:
(1)完成上面问题中的证明;
(2)如果将原问题中的“∠EAB=60°”改为“∠EAB=90°”,原问题中的其它条件不变(如图2),请探究线段EC、AG、BG之间的数量关系,并证明你的结论.
解:线段EG、AG、BG之间的数量关系为___________________________________________________.证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两人在一次射击比赛中击中靶的情况(击中靶中心“×”所在的圆面为10环,靶中各数字表示该数所在圆环被击中所得的环数),每人射击了6次.
(1)请用列表法将他俩的射击成绩统计出来;
(2)请你运用所学的统计知识做出分析,从两个不同角度评价甲、乙两人的打靶成绩.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C90°,ACBC,AD是△ABC的角平分线,以D为圆心,DC为半径作⊙D,交AD于点E.
(1)判断直线AB与⊙D的位置关系并证明.
(2)若AC1,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点P在函数的图象上,过P作直线轴于点A,交直线于点M,过M作直线轴于点B.交函数的图象于点Q。
(1)若点P的横坐标为1,写出点P的纵坐标,以及点M的坐标;
(2)若点P的横坐标为t,
①求点Q的坐标(用含t的式子表示)
②直接写出线段PQ的长(用含t的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是用长度相等的小棒按一定规律摆成的一组图案
(1)填写下表:
图形序号 | ① | ② | ③ | …… | ⑧ |
每个图案中小棒的数量 | 6 | 11 | …… |
(2)请填写出第个图案中小棒的数量(用含的代数式表示);
(3)第30个图案中小棒有多少根?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按图所示的方式放置.点A1、A2、A3,…和点B1、B2、B3,…分别在直线和轴上.已知C1(1,-1),C2(, ),则点A3的坐标是________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE= ;
(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;
(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com