1£®Èçͼ£¬Å×ÎïÏßy=a£¨x-2£©2+hÓëxÖá½»ÓÚA£¨6£¬0£©ºÍBÁ½µã£¬ÓëyÖá½»ÓÚµãC£¨0£¬2$\sqrt{3}$£©£¬µãM´ÓµãB³ö·¢ÒÔÿÃë2¸öµ¥Î»µÄËÙ¶ÈÏòµãAÔ˶¯£¬ÉèÔ˶¯Ê±¼äΪtÃ룬¹ýµãM×÷Ö±ÏßMP¡ÎBCÓëÏ߶ÎAC½»ÓÚµãP£¬ÔÙÒÔÏ߶ÎPMΪб±ß×÷Rt¡÷PMN£¬µãNÔÚxÖáÉÏ£®

£¨1£©ÇóÅ×ÎïÏߵıí´ïʽ£»
£¨2£©ÇóRt¡÷PMNµÄб±ßPMµÄ³¤£¨Óú¬ÓÐtµÄ´úÊýʽ±íʾ£©£¬²¢Çóµ±Rt¡÷PMNµÄ¶¥µãPÓëACµÄÖеãDÖغÏʱtµÄÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÔÚ¡÷AOCµÄÄÚ²¿×÷¾ØÐÎDEOF£¬µãE£¬F·Ö±ðÔÚxÖáºÍyÖáÉÏ£¬ÉèRt¡÷PMNºÍ¾ØÐÎDEOFÖصþ²¿·ÖµÄÃæ»ýΪS£¬µ±Ô˶¯Ê±¼äÔÚ0¡Üt¡Ü2·¶Î§ÄÚʱ£¬Çó³öSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Çó³öSµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©µ±µãPÓëµãDÖغÏʱ£¨Èçͼ1ÖУ©£¬µãNÓëµãEÖغϣ¬´ËʱPN=$\sqrt{3}$£¬¸ù¾ÝPM=$\frac{1}{2}$AM=4-tÁгö·½³Ì¼´¿É½â¾ö£®
£¨3£©·ÖÈýÖÖÇéÐ΢ÙÈçͼ1ÖУ¬µ±0¡Üt$¡Ü\frac{1}{2}$ʱ£¬ÉèPN½»DFÓÚµãH£¬Öصþ²¿·ÖSΪ¾ØÐÎFONHµÄÃæ»ý£¬¢ÚÈçͼ2ÖУ¬µ±$\frac{1}{2}$£¼t£¼1ʱ£¬ÉèPM½»DFÓÚµãG£¬½»FOÓÚµãK£¬PN½»DFÓÚµãH£¬ÔòÖصþ²¿·ÖSΪÎå±ßÐÎONHGKµÄÃæ»ý£¬¢ÛÈçͼ3ÖУ¬µ±1¡Ü1¡Ü2ʱ£¬ÉèPM½»DFÓÚµãG£¬PN½»DFÓÚµãH£¬ÔòÖصþ²¿·ÖSΪËıßÐÎMNHGµÄÃæ»ý£¬
·Ö±ðÇó½â¼´¿É£¬ÔÙ¸ù¾Ýº¯ÊýÐÔÖÊÇó³ö×î´óÖµ£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=a£¨x-2£©2+h¹ýA£¨6£¬0£©ºÍC£¨0£¬2$\sqrt{3}$£©£¬Ôò$\left\{\begin{array}{l}{4a+h=2\sqrt{3}}\\{16a+h=0}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{a=\frac{\sqrt{3}}{6}}\\{h=\frac{8\sqrt{3}}{3}}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-$\frac{\sqrt{3}}{6}$£¨x-2£©2+$\frac{8\sqrt{3}}{3}$£®
£¨2£©¡ß$OB=2£¬OC=2\sqrt{3}$£¬OA=6£¬
¡à¡ÏCBA=60¡ã£¬¡ÏBAC=30¡ã£¬
¡ßBC¡ÎPM£¬
¡à¡ÏAPM=¡ÏACB=90¡ã£¬¡ÏPMA=60¡ã£¬
¡ßBM=2t£¬
¡àAM=8-2t£¬PM=$\frac{1}{2}$AM=4-t£¬
¡ßDÊÇACÖе㣬
¡àDE=$\sqrt{3}$£¬
µ±µãPÓëµãDÖغÏʱ£¨Èçͼ1ÖУ©£¬µãNÓëµãEÖغϣ¬´ËʱPN=$\sqrt{3}$£¬
¡àPM=2£¬¼´4-t=2£¬
¡àt=2£®
£¨3£©¡ßËıßÐÎDEOFÊǾØÐΣ¬
¡àDE=OF=$\sqrt{3}$£¬
ÓÉ£¨2£©¿ÉÖªBM=2t£¬PM=4-t£¬
¡àMN=$\frac{1}{2}$PM=2-$\frac{1}{2}$t£¬
BN=2t+2-$\frac{1}{2}$t=2+$\frac{3}{2}$t£¬ON=BN-BO=$\frac{3}{2}$t£®
¢ÙÈçͼ1ÖУ¬µ±0¡Üt$¡Ü\frac{1}{2}$ʱ£¬ÉèPN½»DFÓÚµãH£¬Öصþ²¿·ÖSΪ¾ØÐÎFONHµÄÃæ»ý£¬
¡àS=ON•OF=$\sqrt{3}$¡Á$\frac{3}{2}$t=$\frac{3\sqrt{3}}{2}$t£¬
¡ßSËætµÄÔö´ó¶øÔö´ó£¬
¡àµ±t=$\frac{1}{2}$ʱ£¬S×î´ó=$\frac{3\sqrt{3}}{4}$£®
¢ÚÈçͼ2ÖУ¬µ±$\frac{1}{2}$£¼t£¼1ʱ£¬ÉèPM½»DFÓÚµãG£¬½»FOÓÚµãK£¬PN½»DFÓÚµãH£¬ÔòÖصþ²¿·ÖSΪÎå±ßÐÎONHGKµÄÃæ»ý£¬
¡ßMO=2-2t£¬
¡àKO=£¨2-2t£©tan60¡ã=2$\sqrt{3}$-2$\sqrt{3}$t£¬
¡àFK=$\sqrt{3}$-£¨2$\sqrt{3}$-2$\sqrt{3}$t£©=$\sqrt{3}$£¨2t-1£©£¬
S=S¾ØÐÎONHF-S¡÷FGK=$\sqrt{3}$¡Á$\frac{3}{2}$t-$\frac{\sqrt{3}}{2}$£¨2t-1£©£¨2t-1£©=-2$\sqrt{3}$t2+$\frac{7\sqrt{3}}{2}$t-$\frac{\sqrt{3}}{2}$=-2$\sqrt{3}$£¨t-$\frac{7}{8}$£©2+$\frac{33\sqrt{3}}{32}$£¬
¡àµ±t=$\frac{7}{8}$ʱ£¬S×î´ó=$\frac{33\sqrt{3}}{32}$£®
¢ÛÈçͼ3ÖУ¬µ±1¡Ü1¡Ü2ʱ£¬ÉèPM½»DFÓÚµãG£¬PN½»DFÓÚµãH£¬ÔòÖصþ²¿·ÖSΪËıßÐÎMNHGµÄÃæ»ý£¬
¡ßPN=PMcos60¡ã=$\frac{\sqrt{3}}{2}$£¨4-t£©£¬¡àPH=$\frac{\sqrt{3}}{2}$£¨4-t£©-$\sqrt{3}$=$\sqrt{3}$-$\frac{\sqrt{3}}{2}$t£¬
¡àGH=$\frac{\sqrt{3}}{3}$£¨$\sqrt{3}$-$\frac{\sqrt{3}}{2}$t£©=1-$\frac{1}{2}$t£¬
¡àS=$\frac{1}{2}$[£¨1-$\frac{1}{2}$t£©+£¨2-$\frac{1}{2}$t£©]¡Á$\sqrt{3}$=$\frac{3\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$t£¬
¡ß-$\frac{\sqrt{3}}{2}$£¼0£¬
¡àSËætÔö´ó¶ø¼õС£¬
¡àt=1ʱ£¬S×î´ó=$\sqrt{3}$£®
×ÛÉÏËùÊöS=$\left\{\begin{array}{l}{\frac{3\sqrt{3}}{2}t}&{£¨0¡Üt¡Ü\frac{1}{2}£©}\\{-2\sqrt{3}{t}^{2}+\frac{7\sqrt{3}}{2}t-\frac{\sqrt{3}}{2}}&{£¨\frac{1}{2}£¼t£¼1£©}\\{-\frac{\sqrt{3}}{2}t+\frac{3\sqrt{3}}{2}}&{£¨1¡Üt¡Ü2£©}\end{array}\right.$£¬ÇÒt=$\frac{7}{8}$ʱ£¬S×î´ó=$\frac{33\sqrt{3}}{32}$£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢¾ØÐεÄÐÔÖÊ¡¢Èý½ÇÐΡ¢¶à±ßÐεÄÃæ»ýÎÊÌâµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÕÆÎÕ´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬Ñ§»áÕýÈ·»­³öͼÐΣ¬Çó³ö·Ö¶Îº¯ÊýµÄ½âÎöʽ£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èç¹ýÕý·½ÌåÖÐÓй«¹²¶¥µãµÄÈýÌõÀâµÄÖеãÇгöÒ»¸öƽÃ棬ÐγÉÈçͼËùʾµÄ¼¸ºÎÌ壬ÆäÕýÈ·µÄÕ¹¿ªÍ¼Îª£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Òòʽ·Ö½â
£¨1£©x4-1
£¨2£©-a+2a2-a3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®¼ÆË㣺
£¨1£©2sin45¡ã+£¨3.14-¦Ð£©0+$\frac{\sqrt{8}}{2}$£»    
£¨2£©$\frac{{x}^{2}-1}{x-1}$¡Â$\frac{{x}^{2}-2x+1}{{x}^{2}-x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º2a-$\sqrt{{a}^{2}-4a+4}$£¬ÆäÖÐa=$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÈçͼͼÐÎÖУ¬ÓÉ¡Ï1=¡Ï2Äܵõ½AB¡ÎCDµÄÊÇ£¨¡¡¡¡£©
A£®B£®
C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚ¡ÑOÖУ¬ABΪֱ¾¶£¬D¡¢EΪԲÉÏÁ½µã£¬CΪԲÍâÒ»µã£¬ÇÒ¡ÏE+¡ÏC=90¡ã£®
£¨1£©ÇóÖ¤£ºBCΪ¡ÑOµÄÇÐÏߣ®
£¨2£©ÈôsinA=$\frac{3}{5}$£¬BC=6£¬Çó¡ÑOµÄ°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªx=2-$\sqrt{3}$£¬´úÊýʽ£¨7+4$\sqrt{3}$£©x2-£¨2+$\sqrt{3}$£©x+$\sqrt{3}$µÄÖµÊÇ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®»õ³µºÍ½Î³µ·Ö±ð´Ó¼×¡¢ÒÒÁ½µØͬʱ³ö·¢£¬ÑØͬһ¹«Â·ÏàÏò¶øÐУ®½Î³µ³ö·¢2.4hºóÐÝÏ¢£¬Ö±ÖÁÓë»õ³µÏàÓöºó£¬ÒÔÔ­ËٶȼÌÐøÐÐÊ»£®Éè»õ³µ³ö·¢xhºó£¬»õ³µ¡¢½Î³µ·Ö±ðµ½´ïÀë¼×µØy1kmºÍy2kmµÄµØ·½£¬Í¼ÖеÄÏ߶ÎOA¡¢ÕÛÏßBCDE·Ö±ð±íʾy1¡¢y2ÓëxÖ®¼äµÄº¯Êý¹Øϵ£®
£¨1£©ÇóµãDµÄ×ø±ê£¬²¢½âÊ͵ãDµÄʵ¼ÊÒâÒ壻
£¨2£©ÇóÏ߶ÎDEËùÔÚÖ±Ïߵĺ¯Êý±í´ïʽ£»
£¨3£©µ±»õ³µ³ö·¢2»ò5hʱ£¬Á½³µÏà¾à200km£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸