·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨2£©µ±µãPÓëµãDÖغÏʱ£¨Èçͼ1ÖУ©£¬µãNÓëµãEÖغϣ¬´ËʱPN=$\sqrt{3}$£¬¸ù¾ÝPM=$\frac{1}{2}$AM=4-tÁгö·½³Ì¼´¿É½â¾ö£®
£¨3£©·ÖÈýÖÖÇéÐ΢ÙÈçͼ1ÖУ¬µ±0¡Üt$¡Ü\frac{1}{2}$ʱ£¬ÉèPN½»DFÓÚµãH£¬Öصþ²¿·ÖSΪ¾ØÐÎFONHµÄÃæ»ý£¬¢ÚÈçͼ2ÖУ¬µ±$\frac{1}{2}$£¼t£¼1ʱ£¬ÉèPM½»DFÓÚµãG£¬½»FOÓÚµãK£¬PN½»DFÓÚµãH£¬ÔòÖصþ²¿·ÖSΪÎå±ßÐÎONHGKµÄÃæ»ý£¬¢ÛÈçͼ3ÖУ¬µ±1¡Ü1¡Ü2ʱ£¬ÉèPM½»DFÓÚµãG£¬PN½»DFÓÚµãH£¬ÔòÖصþ²¿·ÖSΪËıßÐÎMNHGµÄÃæ»ý£¬
·Ö±ðÇó½â¼´¿É£¬ÔÙ¸ù¾Ýº¯ÊýÐÔÖÊÇó³ö×î´óÖµ£®
½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=a£¨x-2£©2+h¹ýA£¨6£¬0£©ºÍC£¨0£¬2$\sqrt{3}$£©£¬Ôò$\left\{\begin{array}{l}{4a+h=2\sqrt{3}}\\{16a+h=0}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{a=\frac{\sqrt{3}}{6}}\\{h=\frac{8\sqrt{3}}{3}}\end{array}\right.$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=-$\frac{\sqrt{3}}{6}$£¨x-2£©2+$\frac{8\sqrt{3}}{3}$£®
£¨2£©¡ß$OB=2£¬OC=2\sqrt{3}$£¬OA=6£¬
¡à¡ÏCBA=60¡ã£¬¡ÏBAC=30¡ã£¬
¡ßBC¡ÎPM£¬
¡à¡ÏAPM=¡ÏACB=90¡ã£¬¡ÏPMA=60¡ã£¬
¡ßBM=2t£¬
¡àAM=8-2t£¬PM=$\frac{1}{2}$AM=4-t£¬
¡ßDÊÇACÖе㣬
¡àDE=$\sqrt{3}$£¬
µ±µãPÓëµãDÖغÏʱ£¨Èçͼ1ÖУ©£¬µãNÓëµãEÖغϣ¬´ËʱPN=$\sqrt{3}$£¬
¡àPM=2£¬¼´4-t=2£¬
¡àt=2£®
£¨3£©¡ßËıßÐÎDEOFÊǾØÐΣ¬
¡àDE=OF=$\sqrt{3}$£¬
ÓÉ£¨2£©¿ÉÖªBM=2t£¬PM=4-t£¬
¡àMN=$\frac{1}{2}$PM=2-$\frac{1}{2}$t£¬
BN=2t+2-$\frac{1}{2}$t=2+$\frac{3}{2}$t£¬ON=BN-BO=$\frac{3}{2}$t£®
¢ÙÈçͼ1ÖУ¬µ±0¡Üt$¡Ü\frac{1}{2}$ʱ£¬ÉèPN½»DFÓÚµãH£¬Öصþ²¿·ÖSΪ¾ØÐÎFONHµÄÃæ»ý£¬
¡àS=ON•OF=$\sqrt{3}$¡Á$\frac{3}{2}$t=$\frac{3\sqrt{3}}{2}$t£¬
¡ßSËætµÄÔö´ó¶øÔö´ó£¬
¡àµ±t=$\frac{1}{2}$ʱ£¬S×î´ó=$\frac{3\sqrt{3}}{4}$£®
¢ÚÈçͼ2ÖУ¬µ±$\frac{1}{2}$£¼t£¼1ʱ£¬ÉèPM½»DFÓÚµãG£¬½»FOÓÚµãK£¬PN½»DFÓÚµãH£¬ÔòÖصþ²¿·ÖSΪÎå±ßÐÎONHGKµÄÃæ»ý£¬
¡ßMO=2-2t£¬
¡àKO=£¨2-2t£©tan60¡ã=2$\sqrt{3}$-2$\sqrt{3}$t£¬
¡àFK=$\sqrt{3}$-£¨2$\sqrt{3}$-2$\sqrt{3}$t£©=$\sqrt{3}$£¨2t-1£©£¬
S=S¾ØÐÎONHF-S¡÷FGK=$\sqrt{3}$¡Á$\frac{3}{2}$t-$\frac{\sqrt{3}}{2}$£¨2t-1£©£¨2t-1£©=-2$\sqrt{3}$t2+$\frac{7\sqrt{3}}{2}$t-$\frac{\sqrt{3}}{2}$=-2$\sqrt{3}$£¨t-$\frac{7}{8}$£©2+$\frac{33\sqrt{3}}{32}$£¬
¡àµ±t=$\frac{7}{8}$ʱ£¬S×î´ó=$\frac{33\sqrt{3}}{32}$£®
¢ÛÈçͼ3ÖУ¬µ±1¡Ü1¡Ü2ʱ£¬ÉèPM½»DFÓÚµãG£¬PN½»DFÓÚµãH£¬ÔòÖصþ²¿·ÖSΪËıßÐÎMNHGµÄÃæ»ý£¬
¡ßPN=PMcos60¡ã=$\frac{\sqrt{3}}{2}$£¨4-t£©£¬¡àPH=$\frac{\sqrt{3}}{2}$£¨4-t£©-$\sqrt{3}$=$\sqrt{3}$-$\frac{\sqrt{3}}{2}$t£¬
¡àGH=$\frac{\sqrt{3}}{3}$£¨$\sqrt{3}$-$\frac{\sqrt{3}}{2}$t£©=1-$\frac{1}{2}$t£¬
¡àS=$\frac{1}{2}$[£¨1-$\frac{1}{2}$t£©+£¨2-$\frac{1}{2}$t£©]¡Á$\sqrt{3}$=$\frac{3\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$t£¬
¡ß-$\frac{\sqrt{3}}{2}$£¼0£¬
¡àSËætÔö´ó¶ø¼õС£¬
¡àt=1ʱ£¬S×î´ó=$\sqrt{3}$£®
×ÛÉÏËùÊöS=$\left\{\begin{array}{l}{\frac{3\sqrt{3}}{2}t}&{£¨0¡Üt¡Ü\frac{1}{2}£©}\\{-2\sqrt{3}{t}^{2}+\frac{7\sqrt{3}}{2}t-\frac{\sqrt{3}}{2}}&{£¨\frac{1}{2}£¼t£¼1£©}\\{-\frac{\sqrt{3}}{2}t+\frac{3\sqrt{3}}{2}}&{£¨1¡Üt¡Ü2£©}\end{array}\right.$£¬ÇÒt=$\frac{7}{8}$ʱ£¬S×î´ó=$\frac{33\sqrt{3}}{32}$£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢¾ØÐεÄÐÔÖÊ¡¢Èý½ÇÐΡ¢¶à±ßÐεÄÃæ»ýÎÊÌâµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÕÆÎÕ´ý¶¨ÏµÊý·¨È·¶¨º¯Êý½âÎöʽ£¬Ñ§»áÕýÈ·»³öͼÐΣ¬Çó³ö·Ö¶Îº¯ÊýµÄ½âÎöʽ£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | B£® | ||||
C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com