精英家教网 > 初中数学 > 题目详情
(A类)如图1,矩形ABCD沿着BE折叠后,点C落在AD边上的点F处.如果∠ABF=50°,求∠CBE的度数.
(B类)如图2,在△ABC中,已知AC=8cm,AB=6cm,E是AC上的点,DE平分∠BEC,且DE⊥BC,垂足为D,求△ABE的周长.
(C类)如图3,在△ABC中,已知AD是∠BAC的平分线,DE、DF分别垂直于AB、AC,垂足分别为E、F,且D是BC的中点,你认为线段EB与FC相等吗?如果相等,请说明理由.
(A类)解:∵矩形ABCD沿着BE折叠后,点C落在AD边上的点F处,
∴△BEC≌△BEF,
∴∠EBC=∠EBF,
∴∠ABF+∠EBC+∠EBF=90°,
∵∠ABF=50°,
∴∠EBC=∠FBE=(90°﹣50°)=20°;
(B类)解:∵DE平分∠BEC,且DE⊥BC,
∴在△BED和△CED中,
∵∠BED=∠CED,DE=DE,∠BDE=∠CDE=90°,

∴△BED≌△CED(ASA),
∴BE=CE;
C△ABE=AB+BE+AE=AB+AC=6+8=14,
(C类)解:相等,
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,在Rt△BED和Rt△CFD中,
∵DE=DF,BD=DC,
∴Rt△BED≌Rt△CFD(HL),
∴EB=FC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

八年级数学学习合作小组在学过《图形的相似》这一章后,发现可将相似三角形的定义、判定以及性质拓展到矩形、菱形的相似中去.如:我们可以定义:“长和宽之比相等的矩形是相似矩形.”相似矩形也有以下的性质:相似矩形的对角线之比等于相似比,周长比等于相似比,面积比等于相似比的平方等等.请你参与这个学习小组,一同探索这类问题:
(1)写出判定菱形相似的一种判定方法:若有一组角对应相等(或两组对角线对应成比例),则这两个菱形相似;
(2)如图,将菱形ABCD沿着直线AC向右平移后得到菱形A′B′C′D′,试证明:四边形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=
2
,菱形A′FCE的面积是菱形ABCD面积的一半,求平移的距离AA′的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(A类7分)如图1,在矩形ABCD中,AF=DE. BE与CF相等吗?如果相等请说明理由.
(B类8分)如图2,在?ABCD中,AE=CF.四边形BFDE是平行四边形吗?如果是请说明理由.
(C类9分)如图3,在△ABC中,BC的垂直平分线EF交BC于D,且CF=BE.试说明四边形BFCE是菱形.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(A类12分)如图1,矩形ABCD沿着BE折叠后,点C落在AD边上的点F处.如果∠ABF=50°,求∠CBE的度数.
(B类13分)如图2,在△ABC中,已知AC=8cm,AB=6cm,E是AC上的点,DE平分∠BEC,且DE⊥BC,垂足为D,求△ABE的周长.
(C类14分)如图3,在△ABC中,已知AD是∠BAC的平分线,DE、DF分别垂直于AB、AC,垂足分别为E、F,且D是BC的中点,你认为线段EB与FC相等吗?如果相等,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(A类)在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.试判断AF与CE是否相等,并说明理由.
(B类)如图,四边形ABCD是矩形,E是AB上一点,且DE=CD,CF⊥DE,垂足为F.试说明AD与CF是否相等,并说明理由.
(C类)如图,在菱形ABCD中,∠DAB=60°,CE⊥AC且与AB的延长线交于点E.试说明四边形AECD是等腰梯形.

查看答案和解析>>

同步练习册答案