A. | 3 | B. | $\frac{9}{2}$ | C. | $\sqrt{19}$ | D. | $\sqrt{21}$ |
分析 将△CEB绕点C逆时针旋转90°,得到△ACF,连结DF,根据旋转的性质可得CE=CF,AF=BE,∠ACF=∠BCE,∠CAF=∠B=45°,然后求出∠DCF=45°,从而得到∠DCE=∠DCF,再利用“边角边”证明△CDE和△CDF全等,根据全等三角形对应边相等可得DF=DE,再求出△ADF是直角三角形,然后勾股定理得出DE2=AD2+BE2,由此即可解决问题.
解答 如图,将△BCE绕点C逆时针旋转90°,得到△ACF,连结DF.
由旋转的性质得,CE=CF,AF=BE,∠ACF=∠BCE,∠CAF=∠B=45°,
∵∠ACB=90°,∠DCE=45°,
∴∠DCF=∠ACD+∠ACF=∠ACD+∠BCE=∠ACB-∠DCE=90°-45°=45°,
∴∠DCE=∠DCF,
在△CDE和△CDF中,
$\left\{\begin{array}{l}{CE=CF}\\{∠DCE=∠DCF}\\{CD=CD}\end{array}\right.$,
∴△CDE≌△CDF(SAS),
∴DF=DE,
∵∠DAF=∠BAC+∠CAF=45°+45°=90°,
∴△ADF是直角三角形,
∴DF2=AD2+AF2,
∴DE2=AD2+BE2,
∵AD=2,DE=5
∴BE=$\sqrt{21}$;
点评 本题考查了作图-旋转变换,作图-翻折变换,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,难度适中.准确作出旋转后的图形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com