·ÖÎö £¨1£©¸ù¾Ý×ø±êÖáÉϵãµÄ×ø±êÌØÕ÷¿ÉÇóB£¨3£¬0£©£¬C£¨0£¬3£©£¬ÔÙ¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©´æÔÚ£¬·ÖÈýÖÖÇé¿ö£º¹ýBµã´¹Ö±BCµÄÖ±ÏߵĽâÎöʽΪy=x+b£¬¹ýCµã´¹Ö±BCµÄÖ±Ïß½âÎöʽΪy=x+3£¬ÒÔBCΪб±ß£¬½øÐÐÌÖÂÛ¿ÉÇóµãQµÄ×ø±ê£»
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬T£¨a£¬b£©£¬¹ýT×÷PQ¡ÎxÖᣬ¹ýM£¬N×÷MP¡ÍPQÓÚP£¬NQ¡ÍPQÓÚQ£¬¿ÉÖ¤¡÷MPT¡×¡÷TQN£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃa£¨x1+x2£©-a2-x1x2=y1y2-b£¨y1+y2£©+b2£¬ÔÙ¸ù¾Ýx1£¬x2£¬y1£¬y2ÊÇ$\left\{\begin{array}{l}{y=kx+4}\\{y={x}^{2}-4x+3}\end{array}\right.$µÄ½â£¬µÃµ½x2-£¨4+k£©x-1=0£¬µÃµ½kΪÈκÎʵÊý£¬3-b=0£¬16-4b-a=0£¬a2-4a-8b+b2+15=0£¬½âµÃa=4£¬b=3£¬´Ó¶øÇó½â£®
½â´ð ½â£º£¨1£©¡ßÖ±Ïßy=-x+3ÓëxÖᣬyÖá·Ö±ðÏཻÓÚµãB£¬C£¬
¡àB£¨3£¬0£©£¬C£¨0£¬3£©£¬
¡ß¶Ô³ÆÖáΪֱÏßx=2£¬
¡àÉè¸ÃÅ×ÎïÏߵĺ¯Êý±í´ïʽΪy=a£¨x-1£©£¨x-3£©£¬
°ÑC£¨0£¬3£©´úÈëµÃ3a=3£¬½âµÃa=1£¬
¡à¸ÃÅ×ÎïÏߵĺ¯Êý±í´ïʽy=£¨x-1£©£¨x-3£©=x2-4x+3£»
£¨2£©´æÔÚ£¬Éè¹ýBµã´¹Ö±BCµÄÖ±ÏߵĽâÎöʽΪy=x+b£¬
°ÑB£¨3£¬0£©´úÈëµÃb=-3£¬
ÔòÖ±ÏߵĽâÎöʽΪy=x-3£¬
ÒÀÌâÒâÓÐ$\left\{\begin{array}{l}{y=x-3}\\{y={x}^{2}-4x+3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{x}_{1}=2}\\{{y}_{1}=-1}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=3}\\{{y}_{2}=0}\end{array}\right.$£¬
¡àQ1£¨2£¬-1£©£¬
¹ýCµã´¹Ö±BCµÄÖ±Ïß½âÎöʽΪy=x+3£¬
ÒÀÌâÒâÓÐ$\left\{\begin{array}{l}{y=x+3}\\{y={x}^{2}-4x+3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{x}_{1}=0}\\{{y}_{1}=3}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=5}\\{{y}_{2}=8}\end{array}\right.$£¬
¡àQ2£¨5£¬8£©£¬
ÒÔBCΪб±ß£¬Éè¦Â£¨a£¬a2-4a+3£©£¬Ôò
a2+£¨a2-4a£©2+£¨a-3£©2+£¨a2-4a+3£©2=18£¬
a3-8a2+20a-15=0£¬
£¨a-3£©£¨a2-5a+5£©=0£¬
½âµÃa1=3£¬a2=$\frac{5¡À\sqrt{5}}{2}$£¬
¡àQ3£¨$\frac{5+\sqrt{5}}{2}$£¬$\frac{\sqrt{5}+1}{2}$£©£¬Q4£¨$\frac{5-\sqrt{5}}{2}$£¬$\frac{1-\sqrt{5}}{2}$£©£¬
¡à´æÔÚµãQ£¬Ê¹µÃÒÔµãB£¬C£¬QΪ¶¥µãµÄÈý½ÇÐÎΪֱ½ÇÈý½ÇÐΣ»
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬T£¨a£¬b£©£¬
¹ýT×÷PQ¡ÎxÖᣬ¹ýM£¬N×÷MP¡ÍPQÓÚP£¬NQ¡ÍPQÓÚQ£¬
Ôò¡ÏMTN=90¡ã£¬
Ôò¡÷MPT¡×¡÷TQN£¬
¡à$\frac{{x}_{2}-a}{{y}_{1}-b}$=$\frac{{y}_{2}-b}{a-{x}_{1}}$£¬
a£¨x1+x2£©-a2-x1x2=y1y2-b£¨y1+y2£©+b2£¬
ÆäÖÐx1£¬x2£¬y1£¬y2ÊÇ$\left\{\begin{array}{l}{y=kx+4}\\{y={x}^{2}-4x+3}\end{array}\right.$µÄ½â£¬
¡àx2-£¨4+k£©x-1=0£¬
x1x2=-1£¬
x1+x2=k+4£¬
y1y2=k2x1x2+4k£¨x1+x2£©+16=-k2+4k£¨k+4£©+16£¬
y1+y2=k£¨k+4£©+8£¬
1+a£¨k+4£©-a2=-k2+4k£¨k+4£©+16-b£¨k2+4k+8£©+b2£¬
1+ak+4a-a2=-k3+4k2+16k+16-bk2-4bk-8b+b2£¬
¡à£¨3-b£©k2+£¨16-4b-a£©k+a2-4a-8b+b2+15=0£¬
¡ßy=kx+bÓÐÎÞÊýÌõ£¬
¡àkΪÈκÎʵÊý£¬3-b=0£¬16-4b-a=0£¬a2-4a-8b+b2+15=0£¬
½âµÃa=4£¬b=3£¬
´æÔÚµãT£¨4£¬3£©Ê¹µÃ²»¹ý¶¨µãTµÄÈÎÒâÖ±Ïßl¶¼ÓСÏMTN=90¡ã£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÔËÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ£¬¶þ´Îº¯ÊýµÄ½âÎöʽ£¬Ö±½ÇÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£®×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨ÄѶȣ®ÔËÓÃÊýÐνáºÏ¡¢·ÖÀàÌÖÂÛ¼°·½³Ì˼ÏëÊǽâÌâµÄ¹Ø¼ü£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{{x}^{2}}{x+2}$=$\frac{4}{x+2}$ | B£® | $\sqrt{x-2}$+x=0 | C£® | x2-2=0 | D£® | x2+y2=1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com