11£®Èçͼ£¬Ö±Ïßy=-x+3ÓëxÖᣬyÖá·Ö±ðÏཻÓÚµãB£¬C£¬¾­¹ýB£¬CÁ½µãµÄÅ×ÎïÏßy=ax2+bx+cÓëxÖáµÄÁíÒ»½»µãΪA£¬¶¥µãΪP£¬ÇÒ¶Ô³ÆÖáÊÇÖ±Ïßx=2£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©ÇëÎÊÔÚÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃÒÔµãB£¬C£¬QΪ¶¥µãµÄÈý½ÇÐÎΪֱ½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©¹ýS£¨0£¬4£©µÄ¶¯Ö±Ïßl½»Å×ÎïÏßÓÚM£¬NÁ½µã£¬ÊÔÎÊÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚ¶¨µãT£¬Ê¹µÃ²»¹ý¶¨µãTµÄÈÎÒâÖ±Ïßl¶¼ÓСÏMTN=90¡ã£¿Èô´æÔÚ£¬ÇëÇó³öµãTµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý×ø±êÖáÉϵãµÄ×ø±êÌØÕ÷¿ÉÇóB£¨3£¬0£©£¬C£¨0£¬3£©£¬ÔÙ¸ù¾Ý´ý¶¨ÏµÊý·¨¿ÉÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©´æÔÚ£¬·ÖÈýÖÖÇé¿ö£º¹ýBµã´¹Ö±BCµÄÖ±ÏߵĽâÎöʽΪy=x+b£¬¹ýCµã´¹Ö±BCµÄÖ±Ïß½âÎöʽΪy=x+3£¬ÒÔBCΪб±ß£¬½øÐÐÌÖÂÛ¿ÉÇóµãQµÄ×ø±ê£»
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬T£¨a£¬b£©£¬¹ýT×÷PQ¡ÎxÖᣬ¹ýM£¬N×÷MP¡ÍPQÓÚP£¬NQ¡ÍPQÓÚQ£¬¿ÉÖ¤¡÷MPT¡×¡÷TQN£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃa£¨x1+x2£©-a2-x1x2=y1y2-b£¨y1+y2£©+b2£¬ÔÙ¸ù¾Ýx1£¬x2£¬y1£¬y2ÊÇ$\left\{\begin{array}{l}{y=kx+4}\\{y={x}^{2}-4x+3}\end{array}\right.$µÄ½â£¬µÃµ½x2-£¨4+k£©x-1=0£¬µÃµ½kΪÈκÎʵÊý£¬3-b=0£¬16-4b-a=0£¬a2-4a-8b+b2+15=0£¬½âµÃa=4£¬b=3£¬´Ó¶øÇó½â£®

½â´ð ½â£º£¨1£©¡ßÖ±Ïßy=-x+3ÓëxÖᣬyÖá·Ö±ðÏཻÓÚµãB£¬C£¬
¡àB£¨3£¬0£©£¬C£¨0£¬3£©£¬
¡ß¶Ô³ÆÖáΪֱÏßx=2£¬
¡àÉè¸ÃÅ×ÎïÏߵĺ¯Êý±í´ïʽΪy=a£¨x-1£©£¨x-3£©£¬
°ÑC£¨0£¬3£©´úÈëµÃ3a=3£¬½âµÃa=1£¬
¡à¸ÃÅ×ÎïÏߵĺ¯Êý±í´ïʽy=£¨x-1£©£¨x-3£©=x2-4x+3£»
£¨2£©´æÔÚ£¬Éè¹ýBµã´¹Ö±BCµÄÖ±ÏߵĽâÎöʽΪy=x+b£¬
°ÑB£¨3£¬0£©´úÈëµÃb=-3£¬
ÔòÖ±ÏߵĽâÎöʽΪy=x-3£¬
ÒÀÌâÒâÓÐ$\left\{\begin{array}{l}{y=x-3}\\{y={x}^{2}-4x+3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{x}_{1}=2}\\{{y}_{1}=-1}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=3}\\{{y}_{2}=0}\end{array}\right.$£¬
¡àQ1£¨2£¬-1£©£¬
¹ýCµã´¹Ö±BCµÄÖ±Ïß½âÎöʽΪy=x+3£¬
ÒÀÌâÒâÓÐ$\left\{\begin{array}{l}{y=x+3}\\{y={x}^{2}-4x+3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{{x}_{1}=0}\\{{y}_{1}=3}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=5}\\{{y}_{2}=8}\end{array}\right.$£¬
¡àQ2£¨5£¬8£©£¬
ÒÔBCΪб±ß£¬Éè¦Â£¨a£¬a2-4a+3£©£¬Ôò
a2+£¨a2-4a£©2+£¨a-3£©2+£¨a2-4a+3£©2=18£¬
a3-8a2+20a-15=0£¬
£¨a-3£©£¨a2-5a+5£©=0£¬
½âµÃa1=3£¬a2=$\frac{5¡À\sqrt{5}}{2}$£¬
¡àQ3£¨$\frac{5+\sqrt{5}}{2}$£¬$\frac{\sqrt{5}+1}{2}$£©£¬Q4£¨$\frac{5-\sqrt{5}}{2}$£¬$\frac{1-\sqrt{5}}{2}$£©£¬
¡à´æÔÚµãQ£¬Ê¹µÃÒÔµãB£¬C£¬QΪ¶¥µãµÄÈý½ÇÐÎΪֱ½ÇÈý½ÇÐΣ»
£¨3£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬T£¨a£¬b£©£¬
¹ýT×÷PQ¡ÎxÖᣬ¹ýM£¬N×÷MP¡ÍPQÓÚP£¬NQ¡ÍPQÓÚQ£¬
Ôò¡ÏMTN=90¡ã£¬
Ôò¡÷MPT¡×¡÷TQN£¬
¡à$\frac{{x}_{2}-a}{{y}_{1}-b}$=$\frac{{y}_{2}-b}{a-{x}_{1}}$£¬
a£¨x1+x2£©-a2-x1x2=y1y2-b£¨y1+y2£©+b2£¬
ÆäÖÐx1£¬x2£¬y1£¬y2ÊÇ$\left\{\begin{array}{l}{y=kx+4}\\{y={x}^{2}-4x+3}\end{array}\right.$µÄ½â£¬
¡àx2-£¨4+k£©x-1=0£¬
x1x2=-1£¬
x1+x2=k+4£¬
y1y2=k2x1x2+4k£¨x1+x2£©+16=-k2+4k£¨k+4£©+16£¬
y1+y2=k£¨k+4£©+8£¬
1+a£¨k+4£©-a2=-k2+4k£¨k+4£©+16-b£¨k2+4k+8£©+b2£¬
1+ak+4a-a2=-k3+4k2+16k+16-bk2-4bk-8b+b2£¬
¡à£¨3-b£©k2+£¨16-4b-a£©k+a2-4a-8b+b2+15=0£¬
¡ßy=kx+bÓÐÎÞÊýÌõ£¬
¡àkΪÈκÎʵÊý£¬3-b=0£¬16-4b-a=0£¬a2-4a-8b+b2+15=0£¬
½âµÃa=4£¬b=3£¬
´æÔÚµãT£¨4£¬3£©Ê¹µÃ²»¹ý¶¨µãTµÄÈÎÒâÖ±Ïßl¶¼ÓСÏMTN=90¡ã£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÔËÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯ÊýµÄ½âÎöʽ£¬¶þ´Îº¯ÊýµÄ½âÎöʽ£¬Ö±½ÇÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£®×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨ÄѶȣ®ÔËÓÃÊýÐνáºÏ¡¢·ÖÀàÌÖÂÛ¼°·½³Ì˼ÏëÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÕýÁù±ßÐÎABCDEFÖУ¬PÊÇAB±ßÉÏÒ»µã£¬PM¡ÎAF½»EFÓÚM£¬PN¡ÎBC½»CDÓÚN£®
£¨1£©Ö±½Óд³ö$\frac{PM+PN}{ED}$µÄֵΪ3
£¨2£©Èô$\frac{PN}{PM}=\frac{5}{4}$£¬¢ÙÇóÖ¤£ºPB=2PA£»¢ÚÇó$\frac{FD}{MN}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÇóÏÂÁи÷ÊýµÄÏà·´Êý£¬µ¹ÊýºÍ¾ø¶ÔÖµ£®
£¨1£©-$\sqrt{7}$£»£¨2£©$\frac{¦Ð}{2}$£»£¨3£©$\root{3}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èô$\sqrt{x-1}$+£¨y-2£©2+|x+z|=0£¬Çó$\sqrt{2x+3y-z}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Ä³Ð£¿ªÕ¹¡°¶ÁÒ»±¾ºÃÊ顱µÄ»î¶¯£¬°àί»á¶ÔѧÉúÔĶÁÊé¼®µÄÇé¿ö½øÐÐÁËÎʾíµ÷²é£¬ÎʾíÉèÖÃÁË¡°Ð¡Ëµ¡±¡¢¡°Ï·¾ç¡±¡¢¡°É¢ÎÄ¡±¡¢¡°ÆäËû¡±ËĸöÀà±ð£¬Ã¿Î»Í¬Ñ§½öÑ¡Ò»Ï
£¨1£©µ÷²éijһλͬѧʱǡºÃÊÇÑ¡Ôñ¡°É¢ÎÄ¡±µÄ¸ÅÂÊΪ$\frac{1}{4}$£»
£¨2£©ÔÚµ÷²éÎʾíÖУ¬Óмס¢ÒÒ¡¢±û¡¢¶¡ËÄλͬѧѡÔñÁË¡°Ï·¾ç¡±À࣬ÏÖ´ÓÖÐÈÎÒâÑ¡³ö2Ãûͬѧ²Î¼ÓѧУµÄÏ·¾çÉçÍÅ£¬ÇëÓû­Ê÷״ͼ»òÁбíµÄ·½·¨£¬ÇóÑ¡È¡µÄ2ÈËÇ¡ºÃÊǼ׺ͱûµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èç¹û2xm+£¨n-1£©x+3ΪÈý´Î¶þÏîʽ£¬Çóm2-2mn+n2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÏÂÁз½³ÌÖУ¬Ã»ÓÐʵÊý½âµÄÊÇ£¨¡¡¡¡£©
A£®$\frac{{x}^{2}}{x+2}$=$\frac{4}{x+2}$B£®$\sqrt{x-2}$+x=0C£®x2-2=0D£®x2+y2=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®±È½Ï´óС£º|-1$\frac{3}{4}$|£¼1.8£¨Ìî¡°£¾¡±¡¢¡°£¼¡±»ò¡°=¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÔÚÊý0.$\stackrel{•}{3}$1$\stackrel{•}{3}$£¬$\sqrt{2}$£¬¦Ð£¬$\frac{22}{7}$£¬-0.101101110¡­£¨Ã¿2¸ö0Ö®¼ä¶àÒ»¸ö1£©ÖУ¬ÎÞÀíÊýµÄ¸öÊýÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸