精英家教网 > 初中数学 > 题目详情
20.这是课本第二章第5节的一道例题:
例1已知如图1,在△ABC中,AB=AC,点D在BC上,且AD=BD.

求证:∠ADB=∠BAC.
课本旁边有这样的“思考与表述”:
怎么想:
要证∠ADB=∠BAC,
由于∠BAC=∠1+∠2,
∠ADB=∠C+∠2,
只要证∠1=∠C.
只要找与∠1相等且与∠C也相等的角.
猜想∠1=∠B,∠C=∠B.而己知AD=BD,AB=AC.
这种思考方法称为分析法,就是从结论出发,要证什么,需证什么,一步步倒推上去,
直到和已知条件吻合.
试仿照上面的“怎么想”用分析法写出下面这道题的分析过程.
如图2,已知∠ABC=90°,D是直线AB上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF.求证:△CDF是等腰直角三角形.
解:怎么想:

分析 首先证明△ADF≌△BCD得到DF=CD,∠ADF=∠BCD,再利用∠BCD+∠CDB=90°得到∠CDF=90°,则可判断△CDF为等腰直角三角形;

解答 证明:
∵AF⊥AB,
∴∠DAF=90°,
在△ADF和△BCD中
$\left\{\begin{array}{l}{AF=DB}\\{∠DAF=∠CBD}\\{AB=BC}\end{array}\right.$,
∴△ADF≌△BCD,
∴DF=CD,∠ADF=∠BCD,
∵∠BCD+∠CDB=90°,
∴∠ADF+∠CDB=90°,即∠CDF=90°,
∴△CDF为等腰直角三角形.

点评 本题考查了全等三角形的判定与性质全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.如图,CD∥AB,BC平分∠ACD,CF平分∠ACG,
∠BAC=40°,∠1=∠2,则下列结论:
①CB⊥CF;②∠1=70°;③∠ACE=2∠4;④∠3=2∠4,
其中正确的是(  )
A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在一次有16个队参加的足球循环比赛(每两个队之间比赛且只需一场)中,规定胜一记3分,平一场记1分,负一场记0分.某队在这次循环赛中所胜场数比所负场数多4场,结果其得了26分,那么该队战平几场?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,AB是⊙O的直径,点C在⊙O上,OD∥AC,交BC于D.若BD=1,则BC的长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.请根据图中提供的信息,回答下列问题:
(1)一个暖瓶与一个水杯分别是多少元?(只填写结果)
一个暖瓶32元;一个水杯2元.
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送二个水杯,单独买水杯不优惠.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.
(3)若必须买5个暖瓶,则当买多少个水杯时到两家商城一样合算.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在正方形ABCD中,F是CD边上的一点,AE⊥AF,AE交CB的延长线于点E,连接EF交AB于点G.
(1)求证:DF•FC=BG•EC;
(2)已知DF:DA=1:3时,△AEF的面积等于10cm2,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在实数3.14,0,$\frac{22}{7}$,$\sqrt{12}$,π,1.6,$\root{3}{-125}$,0.121221222122221…(相邻两个1之间的2一次增加1)中,无理数有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程:$\frac{2x}{x+1}$=$\frac{4x}{2x+2}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.扬州1月某日的最高气温是8°C,最低气温是1°C,这天气温的极差是(  )
A.-7°CB.7°CC.-9°CD.9°C

查看答案和解析>>

同步练习册答案