精英家教网 > 初中数学 > 题目详情
(t007•呼伦贝尔)某车间有t0名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利t4元.现要求加工甲种零件的人数不少于加工乙种零件人数的t倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?
设安排x人加工甲种零件,则(2八-x)人加工乙种零件
依题意得:
y=5x•16+b(2八-x)•2b=-16x+192八
又x≥2(2八-x),x≥13
1
3

∵y是xg一次函数,且-16<八
∴当x=1b时,y最大=1696
即安排1b人加工甲种零件时,每天所获利润最大,每天所获最大利润是1696元.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(人教版)已知:二次函数y=x2-(m+1)x+m的图象交x轴于A(x1,0)、B(x2,0)两点,交y轴正半轴于点C,且x12+x22=10.
(1)求此二次函数的解析式;
(2)是否存在过点D(0,-
5
2
)的直线与抛物线交于点M、N,与x轴交于点E,使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:O为坐标原点,∠AOB=30°,∠ABO=90°且A(2,0).求:过A、B、O三点的二次函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等腰三角形ABC的两个顶点分别是A(0,1)、B(0,3),第三个顶点C在x轴的正半轴上.关于y轴对称的抛物线y=ax2+bx+c经过A、D(3,-2)、P三点,且点P关于直线AC的对称点在x轴上.
(1)求直线BC的解析式;
(2)求抛物线y=ax2+bx+c的解析式及点P的坐标;
(3)设M是y轴上的一个动点,求PM+CM的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)分别求出图中直线和抛物线的函数表达式;
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=
8
2
5
x2+bx+c经过点A(
3
2
,0)和点B(1,2
2
),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=
1
3
∠MFO时,请直接写出线段BM的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,记抛物线y=-x2+1的图象与x正半轴的交点为A,将线段OA分成n等份,设分点分别为P1,P2,…Pn-1,过每个分点作x轴的垂线,分别与抛物线交于点Q1,Q2,…,Qn-1,再记直角三角形OP1Q1,P1P2Q2,…,Pn-2Pn-1Qn-1的面积分别为S1,S2,…,这样就有S1=
n2-1
2n3
,S2=
n2-4
2n3
,…;记W=S1+S2+…+Sn-1,当n越来越大时,你猜想W最接近的常数是(  )
A.
2
3
B.
1
2
C.
1
3
D.
1
4

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

用12m长的栅栏围成一个中间被隔断的鸭舍(栅栏占地面积忽略不计).

(1)如图1,当AB=______m,BC=______m时,所围成两间鸭舍的面积最大,最大值为______m2
(2)如图2,若现有一面长4m的墙可以利用,其余三方及隔断使用栅栏,所围成两间鸭舍面积和的最大值是多少______.

查看答案和解析>>

同步练习册答案