精英家教网 > 初中数学 > 题目详情
已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.

求证:(1)△ADF≌△CBE;(2)EB∥DF.
详见解析

试题分析:(1)由可得,根据平行四边形的性质可得,则可得到,从而可以根据“SAS”证得结论;
(2)由可得,根据“内错角相等,两直线平行”即可证得结论.
试题解析:(1),∴
平行四边形ABCD



(2)

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

正方形ABCD的边长为1,AB、AD上各有一点P、Q,如果的周长为2,求的度数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

探究:已知平行四边形ABCD的面积为100,M是AB所在直线上的一点
(1)如图1:当点M与B重合时,S△DCM =________;

(2)如图2:当点M与B与A均不重合时,S△DCM =________

(3)如图3:当点M在AB(或BA)的延长线上时,S△DCM =________

推广:平行四边形ABCD的面积为a,E、F为两边DC、BC延长线上两点,连接DF、AF、AE、BE.求出图4中阴影部分的面积,并简要说明理由

应用:如图5是某广场的一平行四边形绿地ABCD,PQ、MN分别平行DC、AD,PQ、MN交于O点,其中S四边形AM OP=300m2,S四边形MBQO=400m2,S四边形NCQO=700m2.现进行绿地改造,在绿地内部做一个三角形区域MQD,连接DM、QD、QM,(图中阴影部分)种植不同的花草,求三角形DMQ区域的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图所示,正方形ABCD和正方形AEFG有一个公共点A,连接BE、DG.
线段BE、DG有怎样的关系?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中,正确的是( )
A.四边相等的四边形是正方形B.四角相等的四边形是正方形
C.对角线垂直且相等的四边形是正方形D.对角线相等的菱形是正方形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足            条件时,四边形EFGH是矩形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的面积为__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.

(1)△ABC的面积等于    
(2)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2。

(l)若CF=2,AE=3,求BE的长;
(2)求证:

查看答案和解析>>

同步练习册答案