精英家教网 > 初中数学 > 题目详情
如图,在以O为圆心的两个同心圆中,小圆的半径长为2,大圆的弦AB与小圆交于点C、D,且AB=3CD,∠COD=60°.
(1)求大圆半径的长;
(2)若大圆的弦AE与小圆切于点F,求AE的长.

【答案】分析:(1)求大圆的半径,需通过构建直角三角形求解.连接OA,取AB的中点M,连接OM;在构建的Rt△OAM中,OM的长可在等边△OCD中求出,而AB=3CD=6,因此AM=3;根据勾股定理可求出OA即大圆的半径长.
(2)连接OF,由切线的性质知:OF⊥AE;根据垂径定理可得AF=AE;
由于AC=CD=2,可用切割线定理求出AF的长,进而可求出AE的长.
解答:解:(1)如图,在小圆中;
∵CO=DO,∠COD=60°;
∴△COD是等边三角形;
取CD的中点M,连接OM,则OM⊥CD;
∵CO=2,
∴OM=CO=
连接AO,在Rt△AOM中,AM=CD=3;
∴AO===2
即大圆的半径长为2

(2)连接OF.
∵AE是小圆的切线,且切点为F;
∴OF⊥AE.
又∵AE为大圆的弦,
∴AE=2AF.
由切割线定理,有:AF2=AC•AD;
∵AC=CD=2,AD=2CD,
∴AF=2
∴AE=2AF=4
点评:本题主要考查了垂径定理、解直角三角形和切割线定理.求圆的弦长等问题一般要转化为解直角三角形的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,已知AB=8,大圆半径为5,则小圆半径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•静安区二模)如图,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于B,大圆的弦BC⊥AB,过点C作大圆的切线交AB的延长线于D,OC交小圆于E
(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长y,yx之间的函数解析式,并写出定义域.
(3)△BCE能否成为等腰三角形?如果可能,求出大圆半径;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在以O为圆心的两个同心圆中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP=1,MA=AB=BC,则△MBQ的面积为
3
15
8
3
15
8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5cm,小圆的半径为3cm,则弦AB的长为(  )

查看答案和解析>>

同步练习册答案