精英家教网 > 初中数学 > 题目详情

【题目】矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.FBC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.

(1)当点F运动到边BC的中点时,求点E的坐标;

(2)连接EF,求∠EFC的正切值;

(3)如图2,将CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.

【答案】(1)E(2,3);(2);(3).

【解析】(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;

(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CF,即可得出结论;

(3)先判断出EHG∽△GBF,即可求出BG,最后用勾股定理求出k,即可得出结论.

1)OA=3,OB=4,

B(4,0),C(4,3),

FBC的中点,

F(4,),

F在反比例y=函数图象上,

k=4×=6,

∴反比例函数的解析式为y=

E点的坐标为3,

E(2,3);

(2)F点的横坐标为4,

F(4,),

CF=BC﹣BF=3﹣=

E的纵坐标为3,

E(,3),

CE=AC﹣AE=4﹣=

RtCEF中,tanEFC=

(3)如图,由(2)知,CF=,CE=

过点EEHOBH,

EH=OA=3,EHG=GBF=90°,

∴∠EGH+HEG=90°,

由折叠知,EG=CE,FG=CF,EGF=C=90°,

∴∠EGH+BGF=90°,

∴∠HEG=BGF,

∵∠EHG=GBF=90°,

∴△EHG∽△GBF,

BG=

RtFBG中,FG2﹣BF2=BG2

2﹣(2=

k=

∴反比例函数解析式为y=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为4,点EF分别在边ABBC上,且AE=BF=1CEDF交于点O.下列结论:①∠DOC=90°, ②OC=OE③tan∠OCD =中,正确的有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:

跳绳成绩(个)

132

133

134

135

136

137

一班人数(人)

1

0

1

5

2

1

二班人数(人)

0

1

4

1

2

2

1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:

众数

中位数

平均数

方差

一班

a

135

135

c

二班

134

b

135

1.8

表中数据a b c

2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】动点Am+23m+4)在直线l上,点Bb0)在x轴上,如果以B为圆心,半径为1的圆与直线l有交点,则b的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一矩形纸片OABC放在直角坐标系中,O为原点Cx轴上,OA5OC13,如图所示,在OA上取一点E,将EOC沿EC折叠,使O点落在AB边上的D点,则E点坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于点,与轴交于点.

1)求抛物线的表达式;

2)点是抛物线上第二象限内的点,连接,设的面积为,当取最大值时,求点的坐标;

3)作射线,将射线点顺时针旋转交抛物线于另一点,在射线上是否存在一点,使的周长最小.若存在,求出的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,

(1)求证:AD是⊙O的切线.

(2)若BC=8,tanB=,求⊙O 的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼之间的距离AC=24m,现需了解甲楼对乙楼的采光的影响情况,当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1m≈1.41≈1.73)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将矩形纸片沿对角线翻折,使点的对应点(落在矩形所在平面内,相交于点,接.

(1)在图1中,

的位置关系为__________________

②将剪下后展开,得到的图形是_________________

(2)若图1中的矩形变为平行四边形时(),如图2所示,结论①、②是否成立,若成立,请对结论②加以证明,若不成立,请说明理由

查看答案和解析>>

同步练习册答案