£¨2013•°²Çìһģ£©¾ØÐÎABCDÖУ¬AD=4cm£¬AB=3cm£¬¶¯µãE´ÓµãC¿ªÊ¼ÑرßCBÏòµãBÒÔ2cm/sµÄËÙ¶ÈÔ˶¯ÖÁµãBÍ£Ö¹£¬¶¯µãF´ÓµãDͬʱ³ö·¢ÑرßDCÏòµãCÒÔ1cm/sµÄËÙ¶ÈÔ˶¯ÖÁµãCÍ£Ö¹£¬Èçͼ¿ÉµÃµ½¾ØÐÎCFHE£¬ÉèÔ˶¯Ê±¼äΪx£¨µ¥Î»£ºs£©£¬´Ëʱ¾ØÐÎABCDÈ¥µô¾ØÐÎCFHEºóÊ£Óಿ·ÖµÄÃæ»ýΪy£¨µ¥Î»£ºcm2£©
£¨1£©ÇëÇó³öyÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£¬²¢Ð´³öxµÄÈ¡Öµ·¶Î§£»
£¨2£©ÊÔÇó³öyµÄ×îСֵ£»
£¨3£©ÊÇ·ñ´æÔÚijһʱ¼äx£¬Ê¹µÃ¾ØÐÎABCDÈ¥µô¾ØÐÎCFHEºóÊ£Óಿ·ÖµÄÃæ»ýΪԭ¾ØÐÎÃæ»ýµÄÒ»°ë£¿Èô´æÔÚ£¬Çó³ö´ËʱxÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾Ýy=S¾ØÐÎABCD-S¾ØÐÎECFH¾Í·ÖÇé¿öÌÖÂÛ£¬µ±0¡Üx¡Ü2ʱ»òµ±2¡Üx¡Ü3ʱ·Ö±ð¿ÉÒÔÇó³öÆä½âÎöʽ¾Í¼´¿É£»
£¨2£©½«¶þ´Îº¯ÊýµÄ½âÎöʽ»¯Îª¶¥µãʽ¾Í¿ÉÒԵóö×îСֵ£¬Ò»´Îº¯ÊýµÄÓÉ×Ô±äÁ¿µÄÈ¡Öµ·¶Î§¾Í¿ÉÒԵóö×îСֵ£»
£¨3£©ÓɾØÐεÄÃæ»ý¿ÉÒÔÖªµÀÒ»°ëµÄÖµ£¬ÓɵڶþÎʵÄÊýÖµµÄ±È½Ï¿ÉÒԵóö½áÂÛ£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬CE=2xcm£¬DF=xcm
¡àCF=£¨3-x£©cm£®
µ±0¡Üx¡Ü2ʱ£¬
¡ày=12-2x£¨3-x£©£¬
y=2x2-6x+12£¬
µ±2£¼x¡Ü3ʱ
y=12-4£¨3-x£©£¬
y=4x£®
¡ày=
2x2-6x+12(0¡Üx¡Ü2)
4x                (2¡Üx¡Ü3)
£»

£¨2£©µ±0¡Üx¡Ü2ʱ£¬
y=2x2-6x+12£¬
¡ày=2£¨x2-3x£©+12£¬
y=2£¨x-1.5£©2+7.5£®
¡àa=2£¾0£¬Å×ÎïÏߵĿª¿ÚÏòÉÏ£¬yÓÉ×îСֵ£¬
¡àµ±x=1.5ʱ£¬y×îС=7.5
µ±2¡Üx¡Ü3ʱ£¬y=4x£¬
¡àk=4£¾0£¬yËæxµÄÔö´ó¶øÔö´ó£¬
¡àx=2ʱ£¬y×îС=8£¬
¡àx=1.5ʱ£¬y×îС=7.5£»

£¨3£©²»´æÔÚ£¬
¡ß
1
2
S¾ØÐÎABCD=12¡Á
1
2
=6£¬
µ±x=
3
2
ʱ£¬y×îС=
15
2
£¬
6£¼7.5£¬
¡à²»´æÔÚijһʱ¼äx£¬Ê¹µÃ¾ØÐÎABCDÈ¥µô¾ØÐÎCFHEºóÊ£Óಿ·ÖµÄÃæ»ýΪԭ¾ØÐÎÃæ»ýµÄÒ»°ë£®
µãÆÀ£º±¾Ì⿼²éÁ˾ØÐεÄÃæ»ý¹«Ê½µÄÔËÓ㬶þ´Îº¯ÊýµÄ½âÎöʽ¼°Ò»´Îº¯ÊýµÄ½âÎöʽµÄÔËÓ㬷ֶκ¯ÊýµÄÔËÓã¬Ò»´Îº¯ÊýµÄ×îÖµºÍ¶þ´Îº¯ÊýµÄ×îÖµµÄÈ·¶¨£¬½â´ðʱÏÈÇó³öº¯ÊýµÄ½âÎöʽÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•°²Çìһģ£©Èçͼ£¬ABΪԲOµÄÖ±¾¶£¬AB=AC£¬AC½»Ô²OÓÚµãD£¬¡ÏBAC=45¡ã£¬Ôò¡ÏDBCµÄ¶ÈÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•°²Çìһģ£©ÎÒÃǶ¨Òå
ab
cd
=ad+bc
£¬ÀýÈç
23
45
=2¡Á5+3¡Á4
=22£¬ÈôxÂú×ã-2¡Ü
-42
3x
£¼2£¬ÔòÕûÊýxµÄÖµÓУ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•°²Çìһģ£©Èçͼ£¬·´Ó³µÄÊÇÎÒÊÐijÖÐѧ°ËÄ꼶£¨8£©°àѧÉú²Î¼ÓÒôÀÖ¡¢ÃÀÊõ¡¢ÌåÓý¿ÎÍâÐËȤС×éÈËÊýµÄÖ±·½Í¼£¨²¿·Ö£©ºÍÉÈÐηֲ¼Í¼£¬ÔòÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

£¨2013•°²Çìһģ£©ÔĶÁÏÂÁнâÌâ¹ý³Ì£¬²¢½â´ðºóÃæµÄÎÊÌ⣺
Èçͼ1£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬CΪÏ߶ÎABµÄÖе㣬ÇóCµãµÄ×ø±ê£®
½â£º·Ö²¼¹ýA¡¢C×öxÖáµÄƽÐÐÏߣ¬¹ýB¡¢C×öyÖáµÄƽÐÐÏߣ¬Á½×éƽÐÐÏߵĽ»µãÈçͼ1Ëùʾ£®
ÉèC£¨x0£¬y0£©£¬ÔòD£¨x0£¬y1£©£¬E£¨x2£¬y1£©£¬F£¨x2£¬y0£©
ÓÉͼ1¿ÉÖª£ºx0=
x2-x1
2
+x1
=
x1+x2
2

y0=
y2-y1
2
+x1
=
y1+y2
2

¡à£¨
x1+x2
2
£¬
y1+y2
2
£©
ÎÊÌ⣺£¨1£©ÒÑÖªA£¨-1£¬4£©£¬B£¨3£¬-2£©£¬ÔòÏ߶ÎABµÄÖеã×ø±êΪ
£¨1£¬1£©
£¨1£¬1£©
£®
£¨2£©Æ½ÐÐËıßÐÎABCDÖУ¬µãA¡¢B¡¢CµÄ×ø±ê·Ö±ðΪ£¨1£¬-4£©£¬£¨0£¬2£©£¬£¨5£¬6£©£¬ÇóµãDµÄ×ø±ê£®
£¨3£©Èçͼ2£¬B£¨6£¬4£©ÔÚº¯Êýy=
1
2
x+1µÄͼÏóÉÏ£¬A£¨5£¬2£©£¬CÔÚxÖáÉÏ£¬DÔÚº¯Êýy=
1
2
x+1µÄͼÏóÉÏ£¬ÒÔA¡¢B¡¢C¡¢DËĸöµãΪ¶¥µã¹¹³ÉƽÐÐËıßÐΣ¬Ö±½Óд³öËùÓÐÂú×ãÌõ¼þµÄDµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸