精英家教网 > 初中数学 > 题目详情
1.如图,下列四组条件中,能判定?ABCD是正方形的有(  )
①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.
A.1个B.2个C.3个D.4个

分析 根据平行四边形的性质,矩形、菱形以及正方形的判定方法对各组条件进行判断即可得出答案.

解答 解:①AB=BC,∠A=90°;
根据有一个角是直角且有一组邻边相等的平行四边形是正方形,能判定?ABCD是正方形,故此选项正确;
②AC⊥BD,AC=BD;
由对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定?ABCD是正方形,故此选项正确;
③OA=OD,BC=CD;
由ABCD是平行四边形,可得AC与BD互相平分,而OA=OD,所以AC=BD,对角线相等的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,既是矩形又是菱形的四边形是正方形,能判定?ABCD是正方形,故此选项正确;
④∠BOC=90°,∠ABD=∠DCA;
由∠BOC=90°,根据对角线互相垂直的平行四边形是菱形,可得?ABCD是菱形;由ABCD是平行四边形,可得AC与BD互相平分,AB∥CD,则∠ABD=∠CDB=∠DCA,所以OC=OD,又对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定?ABCD是正方形,故此选项正确.
故选D.

点评 本题主要考查了正方形的判别方法,正方形的判定方法有:
①先判定四边形是矩形,再判定这个矩形有一组邻边相等;
②先判定四边形是菱形,再判定这个菱形有一个角为直角;
③还可以先判定四边形是平行四边形,再用1或2进行判定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.已知y=x(x+5-a)+2是关于x的二次函数,当x的取值范围在1≤x≤4时,y在x=1时取得最大值,则实数a的取值范围是(  )
A.a=10B.a=4C.a≥9D.a≥10

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,∠AOB=∠BOC,且∠BOC:∠COD:∠DOA=2:5:3,则∠AOB=(  )
A.30°B.36°C.40°D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在五边形的内角中,有2个直角,另外三个角相等,则最大的内角为120du3,这个五边形可作5条对角线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点,点O是在△ABC的内部的一个动点,连接OA、OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)求证:四边形DEFG是平行四边形;
(2)当OA=BC时,求证:四边形DEFG是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在矩形ABCD中,点E,点F为对角线BD上两点,DE=EF=FB.
(1)求证:四边形ACE是平行四边形;
(2)若AE⊥BD,AF=2$\sqrt{2}$,AB=4,求BF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列运算中正确的是(  )
A.$\root{3}{-3}=-\root{3}{-3}$B.$\root{3}{-3}=\root{3}{3}$C.$\root{3}{-3}=\root{3}{{|{-3}|}}$D.$\root{3}{-3}=-\root{3}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某化妆品公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.设x(件)是销售商品的数量,y(元)是销售人员的月工资.如图所示,y1为方案一的函数图象,y2为方案二的函数图象.已知每件商品的销售提成方案二比方案一少7元.从图中信息解答如下问题:
(注:销售提成是指从销售每件商品得到的销售额中提取一定数量的费用):
(1)求y1的函数解析式;
(2)请问方案二中每月付给销售人员的底薪是多少元?
(3)小丽应选择哪种销售方案,才能使月工资更多?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在△ABC中,D、F分别是AB、BC上的点,且DF∥AC,若S△BDF:S△DFC=1:4,则S△BDF:S△DCA=(  )
A.1:16B.1:18C.1:20D.1:24

查看答案和解析>>

同步练习册答案