精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,直线y=-x+1分别与x轴,y轴交于点A,点B.
(1)以AB为一边在第一象限内作等边△ABC及△ABC的外接圆⊙M(用尺规作图,不要求写作法,但要保留作图痕迹);
(2)若⊙M与x轴的另一个交点为点D,求A,B,C,D四点的坐标;
(3)求经过A,B,D三点的抛物线的解析式,并判断在抛物线上是否存在点P,使△ADP的面积等于△ADC的面积?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

【答案】分析:(1)分别以A、B为圆心,AB长为半径画弧.两弧相交于AB上方的C点,连接AC、BC,△ABC就是所求作的等边三角形.
作△ABC的外接圆时,可作任意两边的垂直平分线,垂直平分线的交点就是圆心M;
(2)根据直线AB的解析式可求出A、B的坐标,此时可得出∠OBA=60°,那么AC∥y轴,因此C点的横坐标与A点的横坐标相同,C点的纵坐标是B点纵坐标的2倍据此可求出C点的坐标.连接BD,不难得出∠DBO=∠BAO=30°,由此可根据相似三角形OBD和OAB得出OB2=OD•OA,由此可求出OD的长,即D点的坐标;
(3)可根据(2)得出的A、B、D三点的坐标用待定系数法求出抛物线的解析式.已知了△ADP和△ADC的面积相等,那么P点的纵坐标的绝对值和C点的纵坐标相等,然后将P点的纵坐标代入抛物线的解析式中即可求出P点的坐标.
解答:解:(1)如图,正确作出图形,保留作图痕迹;

(2)由直线y=-x+1,求得点A的坐标为(,0),点B的坐标为(0,1)∴在Rt△AOB中,OA=,OB=1
∴AB=2,tan∠OBA=
∴∠OBA=60°
∴∠OAB=90°-∠OBA=30°
∵△ABC是等边三角形
∴CA=AB=2,∠CAB=60°
∴∠CAD=∠CAB+∠OAB=90°
∴点C的坐标为(,2),连接BM
∵△ABC是等边三角形,
∴∠MBA=∠ABC=30°
∴∠OBM=∠OBA+∠MBA=90°
∴OB⊥BM
∴直线OB是⊙M的切线.
∴OB2=OD•OA
∴12=OD•
∴OD=
∴点D的坐标为(,0);

(3)设经过A,B,D三点的抛物线的解析式是y=a(x-)(x-
把B(0,1)代入上式得a=1
∴抛物线的解析式是y=x2-x+1
存在点P,使△ADP的面积等于△ADC的面积
点P的坐标分别为P1,2),P2,2).
点评:本题是一道综合性很强的压轴题,主要考查二次函数、一次函数、圆、几何作图等大量知识,第3小题是比较常规的结论存在性问题,运用方程思想和数形结合思想可解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案