精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径

(1)判断BC与⊙O的位置关系,并证明你的结论;
(2)求证:△ABD∽△DBE;
(3)若cosB= ,AE=4,求CD.

【答案】
(1)解:结论:BC与⊙O相切.

证明:如图连接OD.

∵OA=OD,

∴∠OAD=∠ODA,

∵AD平分∠CAB,

∴∠CAD=∠DAB,

∴∠CAD=∠ADO,

∴AC∥OD,

∵AC⊥BC,

∴OD⊥BC.

∴BC是⊙O的切线


(2)解:∵BC是⊙O切线,

∴∠ODB=90°,

∴∠BDE+∠ODE=90°,

∵AE是直径,

∴∠ADE=90°,

∴∠DAE+∠AED=90°,

∵OD=OE,

∴∠ODE=∠OED,

∴∠BDE=∠DAB,

∵∠B=∠B,

∴△ABD∽△DBE


(3)解:在Rt△ODB中,∵cosB= = ,设BD=2 k,OB=3k,

∵OD2+BD2=OB2

∴4+8k2=9k2

∴k=2,

∴BO=6,BD=4

∵DO∥AC,

=

=

∴CD=


【解析】(1)结论:BC与⊙O相切,连接OD只要证明OD∥AC即可.(2)欲证明△ABD∽△DBE,只要证明∠BDE=∠DAB即可.(3)在Rt△ODB中,由cosB= = ,设BD=2 k,OB=3k,利用勾股定理列出方程求出k,再利用DO∥AC,得 = 列出方程即可解决问题.本题考查圆的综合题、切线的判定、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,学会用方程的思想思考问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义运算:ab=a(1﹣b).若a,b是方程x2﹣x+ m=0(m<0)的两根,则bb﹣aa的值为(
A.0
B.1
C.2
D.与m有关

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,∠BAC=2∠DAE=2α.
(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;
(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2
(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3 时,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC∠B=40°ADBC边上的高,且∠DAC=20°∠BAC=________

【答案】70°

【解析】∵∠B=40°,AD⊥BC,

∴∠BAD=90°-40°=50°.

∵∠DAC=20°,

∴∠BAC=∠BAD+∠DAC=50°+20°=70°.

型】填空
束】
16

【题目】如图所示,EDABAC上的两点,BDCE交于点O,且AB=AC,使△ACE≌△ABD,你补充的条件是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在图示的方格纸中,(1)画出△ABC关于MN对称的图形△A1B1C1

(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?

(3)在直线MN上找一点P,使得PB+PA最短.(不必说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB的解析式为y=2x+5,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在ABC,ADE中,BAC=DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD.图中的CE、BD有怎样的大小和位置关系?试证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对x,y定义一种新运算T,规定: (其中a,b均为非零常数),这里等式右边是通常的四则运算,例如: ,已知T(1,﹣1)=﹣2,T(4,2)=1
(1)求a,b的值;
(2)若关于m的不等式组 恰好有4个整数解,求实数p的取值范围.

查看答案和解析>>

同步练习册答案