精英家教网 > 初中数学 > 题目详情
17、如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是
8
分析:根据圆周角定理,可证∠C=∠B,又由AD=BD,可证∠B=∠DAB,即得∠DAP=∠C,可证△DAP∽△DCA,得到AD:CD=DP:AD,代值计算即可求CD的长.
解答:解:连接AC,
由圆周角定理知,∠C=∠B,
∵AD=BD
∴∠B=∠DAB,
∴∠DAP=∠C
∴△DAP∽△DCA,
∴AD:CD=DP:AD,
得AD2=DP•CD=CD•(CD-PC),
把AD=4,PC=6代入得,CD=8.
点评:本题利用了等边对等角,圆周角定理,相似三角形的判定和性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为(  )
A、
1
4
B、
1
5
C、
3
8
D、
2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰安)如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•盘锦)如图,AB,CD是⊙O的直径,点E在AB延长线上,FE⊥AB,BE=EF=2,FE的延长线交CD延长线于点G,DG=GE=3,连接FD.
(1)求⊙O的半径;
(2)求证:DF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB,CD是⊙O的两条弦,且AB=CD,点M是
AC
的中点,求证:MB=MD.

查看答案和解析>>

同步练习册答案