精英家教网 > 初中数学 > 题目详情
13.已知:在△ABC中,∠BAC=60°.
(1)如图1,若AB=AC,点P在△ABC内,且PB=5,PA=3,PC=4,直接写出∠APC的度数.
(2)如图2,若AB=AC,点P在△ABC外,且PA=3,PB=5,PC=4,求∠APC的度数;
(3)如图3,若AB=2AC,点P在△ABC内,且PA=$\sqrt{3}$,PB=5,∠APC=120°,直接写出PC的长.

分析 (1)由旋转的性质得到△ADP为等边三角形,从而判断出△BPD为直角三角形,根据勾股定理计算即可;
(2)由旋转的性质得到△DAP是等边三角形,根据勾股定理的逆定理判断出△BPD为直角三角形,即可;
(3)作出△ABQ∽△ACP,判断出△APQ为直角三角形,从而得到△BPQ为直角三角形,根据勾股定理计算即可.

解答 解:(1)把△APC绕着点A顺时针旋转,使点C旋转到点B,得到△ADB,连结DP.

由旋转可知AD=AP,BD=PC,∠DAB=∠PAC,
∴∠DAP=∠BAC=60°,
∴△ADP为等边三角形,
∴DP=PA=3,∠ADP=60°,
∵PB=5,BD=PC=4,PD=3,
∴PD2+BD2=PB2
∴∠BDP=90°,
∴∠APC=∠ADB=∠ADP+∠PDB=60°+90°=150°.

(2)如图2,

把△APC绕点A顺时针旋转,使点C与点B重合,得到△ADB,连接PD,
∴△APC≌△ADB,
∴AD=AP=3,DB=PC=4,∠PAC=∠DAB,∠APC=∠2,
∴∠DAP=∠BAC,
∵∠BAC=60°,
∴∠DAP=60°,
∴△DAP是等边三角形,
∴PD=3,∠1=60°,
∴PD2+DB2=32+42=52=PB2
∴∠PDB=90°,
∴∠2=30°,
∴∠APC=30°;

(3)如图3

作△ABQ,使得:∠QAB=∠PAC,∠ABQ=∠ACP,则△ABQ∽△ACP,
∴∠AQB=∠APC=120°,
∵AB=2AC,
∴△ABQ与△ACP相似比为2,
∴AQ=2AP=2$\sqrt{3}$,BQ=2CP,∠QAP=∠QAB+∠BAP=∠PAC+∠BAP=∠BAC=60°,
∵$\frac{AQ}{AP}$=2,
∴∠APQ=90°,PQ=3,
∴∠AQP=30°
∴∠BQP=∠AQB-∠AQP=120°-30°=90°,
根据勾股定理得,BQ=$\sqrt{P{B}^{2}-P{Q}^{2}}$=4,
∴PC=$\frac{1}{2}$BQ=2.

点评 本题考查了旋转的性质,直角三角形的性质和判断方法,勾股定理,直角三角形的判定是解本题的关键,学会利用旋转添加辅助线,构造特殊三角形,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,在Rt△ABC中,AB=AC=4$\sqrt{2}$,一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止,在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE,设运动时间为t秒
(1)在整个运动过程中,当线段QE与线段AB在一条直线上时,求t的值;
(2)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;
(3)在整个过程中,连结AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;
(4)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.在这一旋转过程中,试判断PM+FN的值是否发生变化?若发生变化,请直接写出变化的范围;若不发生变化,请直接写出此定值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:$\frac{2x}{{{x^2}-9}}-\frac{1}{x-3}$,其中$x=\sqrt{2}-3$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)计算:$-(-1)-{(π-\sqrt{3})^0}+{3^{-1}}$
(2)解方程:$\frac{3}{x-2}+\frac{x}{2-x}$=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,在Rt△ACB中,∠ACB=90°,CD⊥AB于D,DF⊥AC于F,过C作CE∥AB交DF的延长线于点E,则下列结论中错误的是(  )
A.DE2=BD•ABB.S△CEF:S△ADF=BD2:AD2
C.$\frac{BD}{CA}$=$\frac{CF}{AD}$D.$\frac{DF}{BC}$=$\frac{AF}{AB}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知一次函数y=kx+b和y=x+a的图象交于点A,则关于x,y的二元一次方程组$\left\{\begin{array}{l}{kx-y=-b}\\{x-y=-a}\end{array}\right.$的解为(  )
A.$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$B.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$C.$\left\{\begin{array}{l}{x=3}\\{y=0}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:
(1)$\frac{x^2}{x-5}+\frac{25}{5-x}$
(2)$\frac{1}{x-1}$-$\frac{x}{{{x^2}-1}}$
(3)$\frac{x+2}{{{x^2}-2x}}-\frac{x-1}{{{x^2}-4x+4}}$
(4)$\frac{a}{a+1}$+$\frac{a-1}{{a}^{2}-1}$
(5)$\frac{x^2}{x-1}-x-1$
(6)$\frac{{{x^2}-1}}{{{x^2}-2x+1}}$•$\frac{x-1}{{{x^2}+x}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.青岛市确定了“拥湾发展,环湾保护”的发展战略.某中学为了让学生了解环保知识,增强环保意识,举行了一次“保护胶州湾”的环保知识竞赛.共有2000名学生参加了这次竞赛,为了解本次竞赛的情况,从中抽取了部分同学的成绩作为样本进行统计.
分组频数频率
A组:50.5~60.5160.08
B组:60.5~70.50.16
C组:70.5~80.5400.20
D组:80.5~90.5640.32
E组:90.5~10048
合计1
频率分布表
请根据上表和图解答下列问题:
(1)填充频率分布表中的空格并补全频数分布直方图;
(2)样本中,竞赛成绩的中位数落在D组内 (从A、B、C、D、E中选择一个正确答案);
(3)若成绩在90分以上(不含90分)获得一等奖,成绩在80分至90分之间(不含80分,含90分)获得二等奖,除此之外没有其它奖项,则本次竞赛中此中学共有多少名学生获奖?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.
(1)如果随机选取1名同学单独展示,那么女生展示的概率为$\frac{1}{4}$.
(2)如果随机选取2名同学共同展示,求同为男生展示的概率.

查看答案和解析>>

同步练习册答案