精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,∠1=∠2,∠3=∠E试说明:A=∠EBC(请按图填空,并补理由.)

证明:∵∠1=∠2 (已知),

∴________∥_______( ),

∴∠E=∠_______ ( ),

∵∠E=∠3 (已知),

∴∠3=∠____________ ( 等量代换 ),

_________________ (内错角相等,两直线平行),

∴∠A=∠EBC ( ).

【答案】详见解析.

【解析】

根据平行线的判定定理和平行线的性质进行填空.

证明:∵∠1=∠2 (已知),

___BD___∥___CE____ (内错角相等,两直线平行),

∴∠E=∠___4____ (两直线平行,内错角相等),

又∵∠E=∠3 (已知),

∴∠3=∠ 4 ( 等量代换 ),

AD BE (内错角相等,两直线平行),

∴∠A=∠EBC (两直线平行,同位角相等).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线AC、BD交于点O,CEBD,DEAC.

(1)证明:四边形OCED为菱形;

(2)若AC=4,求四边形CODE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骰子是一种特别的数字立方体(如图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是(  ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1分别与x轴、y轴交于点B、C,且与直线l2交于点A.

(1)求出点A的坐标

(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式

(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】AOB与∠COD有共同的顶点O,其中∠AOB=COD=60°.

(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由

(2)如图①,若∠BOC=10°,求∠AOD的度数

(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;

(4)若改变∠AOB,COD的位置,如图②,则(3)的结论还成立吗?若成立请证明若不成立,请直接写出你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,∠A40°.点P是射线AB上一动点(与点A不重合)CECF分别平分∠ACP和∠DCP交射线AB于点EF

(1)求∠ECF的度数;

(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;

(3)当∠AEC=∠ACF时,求∠APC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则SADE:SCDB的值等于(
A.1:
B.1:
C.1:2
D.2:3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】父亲告诉小明:距离地面越高,温度越低,并给小明出示了下面的表格:

距离地面高度(千米)h

0

1

2

3

4

5

温度(℃)t

20

14

8

2

﹣4

﹣10

根据表中,父亲还给小明出了下面几个问题,请你帮助小明回答下列问题:

(1)表中自变量是   ;因变量是   当地面上(即h=0时)时,温度是   ℃.

(2)如果用h表示距离地面的高度,用t表示温度,请写出满足th关系的式子.

(3)计算出距离地面6千米的高空温度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为( )

A. 10 B. 8 C. 6 D. 4

查看答案和解析>>

同步练习册答案