精英家教网 > 初中数学 > 题目详情

【题目】如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)

【答案】直线L上距离D点566米的C处开挖.

【解析】

试题由已知条件易得BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,由BD=800米代入进行计算即可

试题解析:CDAC,

∴∠ACD=90°,

∵∠ABD=135°,

∴∠DBC=45°,

∴∠D=45°,

CB=CD,

在RtDCB中:CD2+BC2=BD2

2CD2=8002

CD=400≈566(米),

答:直线L上距离D点566米的C处开挖.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面的解题过程:

计算:(-15÷13×6.

解:原式=(-15÷(-×6第一步

=(-15÷(-25)(第二步

.第三步

解答:1上面解题过程,从第____步开始错误,错误的原因是_____.

2请写出正确的解题过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下面各题
(1)计算:
(2)先化简.再求值:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2 , 其中a=﹣ ,b=1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF、AG分别架在墙体的点B、点C处,且AB=AC,侧面四边形BDEC为矩形.若测得∠FAG=110°,则∠FBD=(
A.35°
B.40°
C.55°
D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=CB,ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.

① 求证:△ABE≌△CBD

② 若∠CAE30°,求BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】月球是地球的近邻,它的起源一直是人类不断探索的谜题之一.全球迄今进行了126次月球探测活动,因为研究月球可提高人类对宇宙的认识,包括认识太阳系的演化及特点,认识地球自然系统与太空自然现象之间的关系.我们已经认识到,在月球表面,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到﹣183℃.下面对“﹣183的叙述不正确的是(  )

A. ﹣183是一个负数

B. ﹣183表示在海平面以下183

C. ﹣183在数轴上的位置在原点的左边

D. ﹣183是一个比﹣100小的数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4-∠1=180°中能判断直线的有( )

A. 3个 B. 4个 C. 5个 D. 6个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有足够多的长方形和正方形卡片,如下图:
(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.
这个长方形的代数意义是
(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2 , 那么需用2号卡片张,3号卡片张.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的情景对话,然后解答问题:

(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆 的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE. ①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.

查看答案和解析>>

同步练习册答案