精英家教网 > 初中数学 > 题目详情
已知:如图,⊙O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2
7
,AB=BC=3.求BD和AC的长.
∵CD是圆的切线,
∴∠BCD=∠A;
又∠D=∠D,
∴△BCD△CAD,
AC
BC
=
AD
CD
=
CD
BD

AC
3
=
3+BD
2
7
=
2
7
BD

则BD=4或-7(负值舍去).
所以AC=
3
2
7
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,矩形铁片ABCD的长为2a,宽为a;为了要让铁片能穿过直径为
89
10
a
的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);
(1)如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是______,给出证明,并通过计算说明此时铁片都能穿过圆孔;
(2)如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片;
①当BE=DF=
1
5
a
时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;
②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线相交于D,和⊙O相交于E.如果AC平分∠DAB,
(1)求证:∠ADC=90°;
(2)若AB=2r,AD=
8
5
r,求DE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.
(1)求证:AD是圆O的切线;
(2)若PC是圆O的切线,BC=8,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O直径,AC是⊙O弦,点D是
ABC
的中点,弦DE⊥AB,垂足为F,DE交AC于点G.
(1)若过点E作⊙O的切线ME,交AC的延长线于点M(请补完整图形),试问:ME=MG是否成立?若成立,请证明;若不成立,请说明理由;
(2)在满足第(2)问的条件下,已知AF=3,FB=
4
3
,求AG与GM的比.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,点P在BA的延长线上,PC是⊙O的切线,C为切点,PC=2,PB=4,则⊙O的半径等于(  )
A.1B.2C.
3
2
D.
6
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一圆中,两条弦AB,CD相交于点E,M为线段EB之间的点(不包括E,B).过点D,E,M的圆在点E的切线分别交直线BC,AC于F,G.若
AM
AB
=t
,求
GE
EF
(用t表示).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB,BC,CD分别与⊙O相切于E,F,G,且ABCD,BO=6cm,CO=8cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,以BC边为直径的⊙O交AB于点D,连接OD并延长交CA的延长线于点E,过点D作DF⊥OE交EC于点F.
(1)求证:AF=CF.
(2)若ED=2,sin∠E=
3
5
,求AD的长.

查看答案和解析>>

同步练习册答案