精英家教网 > 初中数学 > 题目详情
(2012•巴中)如图,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=
43
.点E、F分别是线段AD、AC上的动点(点E不与A、D点重合),且∠CEF=∠ACB.
(1)求AC的长与点D的坐标.
(2)说明△AEF与△DCE相似.
(3)当△EFC为等腰三角形时,求点E的坐标.
分析:(1)利用矩形的性质,在Rt△ABC中,利用三角函数求出AC、BC的长度,从而得到A点坐标;由点D与点A关于y轴对称,进而得到D点的坐标;
(2)欲证△AEF与△DCE相似,只需要证明两个对应角相等即可.如图①,在△AEF与△DCE中,易知∠CDE=∠CAO,∠AEF=∠DCE,从而问题解决;
(3)当△EFC为等腰三角形时,有三种情况,需要分类讨论:
①当CE=EF时,此时△AEF与△DCE相似比为1,则有AE=CD;
②当EF=FC时,此时△AEF与△DCE相似比为
6
5
,则有AE=
5
6
CD;
③当CE=CF时,F点与A点重合,这与已知条件矛盾,故此种情况不存在.
解答:解:(1)由题意tan∠ACB=
4
3
,∴cos∠ACB=
3
5

∵四边形ABCO为矩形,AB=16,
∴BC=
AB
tan∠ACB
=12,AC=
BC
cos∠ACB
=20,
∴A点坐标为(-12,0),
∵点D与点A关于y轴对称,
∴D(12,0).

(2)点D与点A关于y轴对称,∴∠CDE=∠CAO,
∵∠CEF=∠ACB,∠ACB=∠CAO,
∴∠CDE=∠CEF,
又∵∠AEC=∠AEF+∠CEF=∠CDE+∠DCE(三角形外角性质)
∴∠AEF=∠DCE.
则在△AEF与△DCE中,∠CDE=∠CAO,∠AEF=∠DCE,
∴△AEF∽△DCE.

(3)当△EFC为等腰三角形时,有以下三种情况:
①当CE=EF时,
∵△AEF∽△DCE,
∴△AEF≌△DCE
∴AE=CD=20,
∴OE=AE-OA=20-12=8,
∴E(8,0);
②当EF=FC时,如图②所示,过点F作FM⊥CE于M,则点M为CE中点,
∴CE=2ME=2EF•cos∠CEF=2EF•cos∠ACB=
6
5
EF.
∵△AEF∽△DCE,
EF
CE
=
AE
CD
,即
EF
6
5
EF
=
AE
20
,解得AE=
50
3

∴OE=AE-OA=
50
3
-12=
14
3

∴E(
14
3
,0);
③当CE=CF时,则有∠CFE=∠CEF,
∵∠CEF=∠ACB=∠CAO,
∴∠CFE=∠CAO,即此时E点与D点重合,这与已知条件矛盾.
综上所述,当△EFC为等腰三角形时,点E的坐标为(8,0)或(
14
3
,0).
点评:本题综合考查了矩形、等腰三角形、直角三角形等平面几何图形在坐标平面内的性质与变换,相似三角形的判定与性质应用是其核心.难点在于第(3)问,当△EFC为等腰三角形时,有三种情况,需要分类讨论,注意不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•巴中)①如图1,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕O顺时针旋转90°,画出旋转后的△OA′B′.
②折纸:有一张矩形纸片ABCD如图2,要将点D沿某条直线翻转180°,恰好落在BC边上的点D′处,请在图中作出该直线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•巴中)如图,在平面直角坐标系xOy中,一次函数y1=k1x+1的图象与y轴交于点A,与x轴交于点B,与反比例函数y2=
k2x
的图象分别交于点M、N,已知△AOB的面积为1,点M的纵坐标为2.
(1)求一次函数与反比例函数的解析式;
(2)直接写出y1>y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•巴中)如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是(  )

查看答案和解析>>

同步练习册答案