【题目】已知双曲线y= (x>0),直线l1:y﹣ =k(x﹣ )(k<0)过定点F且与双曲线交于A,B两点,设A(x1 , y1),B(x2 , y2)(x1<x2),直线l2:y=﹣x+ .
(1)若k=﹣1,求△OAB的面积S;
(2)若AB= ,求k的值;
(3)设N(0,2 ),P在双曲线上,M在直线l2上且PM∥x轴,问在第二象限内是否存在一点Q,使得四边形QMPN是周长最小的平行四边形?若存在,请求出Q点的坐标.
【答案】
(1)
解:当k=﹣1时,l1:y=﹣x+2 ,
联立得, ,化简得x2﹣2 x+1=0,
解得:x1= ﹣1,x2= +1,
设直线l1与y轴交于点C,则C(0,2 ).
S△OAB=S△AOC﹣S△BOC= 2 (x2﹣x1)=2
(2)
解:根据题意得: 整理得:kx2+ (1﹣k)x﹣1=0(k<0),
∵△=[ (1﹣k)]2﹣4×k×(﹣1)=2(1+k2)>0,
∴x1、x2 是方程的两根,
∴ ①,
∴AB= = ,
= ,
= ,
将①代入得,AB= = (k<0),
∴ = ,
整理得:2k2+5k+2=0,
解得:k=﹣2,或 k=﹣
(3)
解:∵y﹣ =k(x﹣ )(k<0)过定点F,
∴x= ,y= ,
∴F( , ),
设P(x, ),则M(﹣ + , ),
则PM=x+ ﹣ = = ,
∵PF= = ,
∴PM=PF.
∴PM+PN=PF+PN≥NF=2,
当点P在NF上时等号成立,此时NF的方程为y=﹣x+2 ,
由(1)知P( ﹣1, +1),
∴当P( ﹣1, +1)时,PM+PN最小,此时四边形QMPN是周长最小的平行四边形,
∴Q(﹣ ,2 )
【解析】(1)求出A、B点的横坐标,根据S△OAB=S△AOC﹣S△BOC计算即可.(2)利用方程组以及根与系数的关系,求出AB,根据AB= ,列出方程即可解决问题.(3)首先证明PM=PF.推出PM+PN=PF+PN≥NF=2推出当点P在NF上时等号成立,此时NF的方程为y=﹣x+2 ,由(1)知P( ﹣1, +1),由此即可解决问题.
【考点精析】解答此题的关键在于理解反比例函数的性质的相关知识,掌握性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若原方程的两个实数根为x1、x2 , 且满足x12+x22=|x1|+|x2|+2x1x2 , 求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC= OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,AC=2,BD=2 ,AC,BD相交于点O.
(1)求边AB的长;
(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF与AC相交于点G. ①判断△AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时(BE>CE),求CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
A.2
B.2
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)
①△CMP∽△BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2 ;
⑤当△ABP≌△ADN时,BP=4 ﹣4.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com