【题目】问题发现:
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
(1)求证:△ACD≌△BCE;
(2)求证:CD∥BE.
拓展探究:
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,连接BE,求∠AEB的度数.
【答案】问题发现:(1)证明见解析;(2)证明见解析;
拓展探究:∠AEB=90°.
【解析】
试题(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出AD=BE;
(2)由(1)证得△ACD≌△BCE,得到∠ADC=∠BEC通过等量代换得到∠DCB=∠EBC,有内错角相等得到CD∥BE;
(3)证明△ACD≌△BCE,得出∠ADC=∠BEC,由△DCE为等腰直角三角形,得到∠CDE=∠CED=45°,因为点A,D,E在同一直线上,得到∠ADC=135°,∠BEC=135°,于是得到∠AEB=∠BEC-∠CED=90°.
试题解析:(1)∵△ACB和△DCE均为等边三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=60°,
∴∠ACD=60°-∠CDB=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS).
(2)由(1)证得△ACD≌△BCE,
∴∠ADC=∠BEC,∵∠CDE=60°,
∴∠ADC=∠BEC=120°,
∵∠DCB=60°-∠BCE,∠CBE=180°-∠BEC-∠ECB=60°-∠ECB,
∴∠DCB=∠EBC,
∴CD∥BE;
(3))∠AEB=90°,AE=BE+2CM.
理由:∵△ACB和△DCE均为等腰直角三角形,
∴CA=CB,CD=CE,∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠ADC=∠BEC,
∵△DCE为等腰直角三角形,
∴∠CDE=∠CED=45°,
∵点A,D,E在同一直线上,
∴∠ADC=135°,
∴∠BEC=135°,
∴∠AEB=∠BEC-∠CED=90°.
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD
(1)求∠AOD的度数;
(2)求证:四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,-2)、B(4,-1)、C(3,-3).
(1)画出将△ABC向左平移5个单位,再向上平移3个单位后的△A1B1C1,并写出点B的对应点B1的坐标____________;
(2)以原点O为位似中心,在位似中心的同侧画出△A1B1C1的一个位似△A2B2C2,使它与△A1B1C1的相似比为2:1,并写出点B1的对应点B2的坐标____________;
(3)若△A1B1C1内部任意一点P1 的坐标为(a-5,b+3),直接写出经过(2)的变化后点P1的对应点P2的坐标(用含a、b的代数式表示).P2的坐标是____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图(1)).令△ABD不动,
(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图(2)),证明:MB=MC.
(2)若将图(1)中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图(3)),判断MB、MC的数量关系,并说明理由.
(3)在(2)中,若∠CAE的大小改变(图(4)),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.
(1)求证:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1使它与△ABC的相似比为2;则点B的对应点B1的坐标是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com