精英家教网 > 初中数学 > 题目详情

如图,在锐角三角形ABC中AB=数学公式,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是


  1. A.
    4
  2. B.
    5
  3. C.
    6
  4. D.
    2
A
分析:从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.
解答:如图,在AC上截取AE=AN,连接BE,

∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
在△AME与△AMN中,
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME≥BE,
当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,
∵AB=4,∠BAC=45°,此时△ABE为等腰直角三角形,
∴BE=4,即BE取最小值为4,
∴BM+MN的最小值是4.
故选A.
点评:本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.
规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网(1)如图,在锐角三角形ABC中,BC=12,sinA=
34
,求此三角形外接圆半径.
(2)若BC=a、CA=b、AB=c,sinA、sinB、sinC分别表示三个锐角的正弦值,三角形的外接圆的半径为R,反思(1)的解题过程,请你猜想并写出一个结论.(不需证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在锐角三角形ABC中,AD⊥BC,AD=12,AC=13,BC=14.则AB=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在锐角三角形ABC中,AD⊥BC,AD=12cm,AB=13cm,BC=14cm,则AC的长为(  )
A、12cmB、13cmC、14cmD、15cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在锐角三角形ABC中,AD、CE分别是边BC、AB上的高,垂足分别是D、E,AD、CE相交于点O,若∠B=60°,则∠AOE的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在锐角三角形ABC中,BC=4
2
,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,试求CM+MN的最小值.

查看答案和解析>>

同步练习册答案