精英家教网 > 初中数学 > 题目详情
在△ABC中,CA=CB,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°、∠MPN=30°)按如图所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角∠PCB=α,斜边PN交AC于点D.
(1)当PN∥BC时,∠ACP=
90
90
度;
(2)当α=15°时,求∠ADN的度数;
(3)在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出夹角α的大小.
分析:(1)根据平行线性质求出∠BCP,即可得出答案.
(2)求出∠ACP,根据三角形内角和定理求出∠PDC,即可得出答案;
(3)分为三种情况:当PC=PD时,当PD=CD时,当PC=CD时,根据等腰三角形性质和三角形内角和定理得出关于α的方程,求出即可.
解答:解:(1)∵PN∥BC,∠MPN=30°,
∴∠BCP=∠MPN=30°,
∵∠ACB=120°,
∴∠ACP=∠ACB-∠BCP=90°,
故答案为:90.

(2)∵∠ACB=120°,∠PCB=15°,
∴∠PCD=∠ACB-∠PCB=105°,
∴∠PDC=180°-∠PCD-∠MPN=180°-105°-30°=45°,
∴∠ADN=∠PDC=45°.

(3)△PCD的形状可以是等腰三角形,
∠PCA=120°-α,∠CPD=30°,
①当PC=PD时,△PCD是等腰三角形,
∠PCD=
1
2
(180°-∠MPN)=
1
2
(180°-30°)=75°,
即120°-α=75°,
解得:α=45°;
②当PD=CD时,△PCD是等腰三角形,
∠PCD=∠CPD=30°,
即120°-α=30°,
解得:α=90°;
③当PC=CD时,△PCD是等腰三角形,
∠PCD=180°-2×30°=120°,
即120°-α=120°,
解得:α=0°,
此时点P与点B重合,点D和A重合.
综合上述:当α=45°或90°或0°时,△PCD是等腰三角形,
即α的大小是45°或90°或0°.
点评:本题考查了等腰三角形性质和判定平行线性质的应用,注意要进行分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图,在△ABC中,CA,CB的垂直平分线交点在第三边上,那么这个三角形是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•桂林)如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,在△ABC中,CA=CB,CA、CB的垂直平分线的交点O在AB上,M、N分别在直线AC、BC上,∠MON=∠A=45°
(1)如图1,若点M、N分别在边AC、BC上,求证:CN+MN=AM;
(2)如图2,若点M在边AC上,点N在BC边的延长线上,试猜想CN、MN、AM之间的数量关系,请写出你的结论(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,CA⊥DB,A为垂足,BF⊥DC,F为垂足,AB=AC,DB=7,DA=2,
CA,BF交于E,则EC的长为(  )

查看答案和解析>>

同步练习册答案