ÔĶÁÏÂÁвÄÁÏ£¬»Ø´ðÎÊÌ⣮
²ÄÁÏÒ»£ºÈËÃÇÏ°¹ß°ÑÐÎÈçÊýѧ¹«Ê½µÄº¯Êý³ÆΪ¡°¸ùºÅº¯Êý¡±£¬ÕâÀຯÊýµÄͼÏó¹ØÓÚÔ­µãÖÐÐĶԳƣ®
²ÄÁ϶þ£º¶ÔÈÎÒâµÄʵÊýa¡¢b¶øÑÔ£¬a2-2ab+b2=£¨a-b£©2¡Ý0£¬¼´a2+b2¡Ý2ab£®
Ò×Öªµ±a=bʱ£¬£¨a-b£©2=0£¬¼´£ºa2-2ab+b2=0£¬ËùÒÔa2+b2=2ab£®
Èôa¡Ùb£¬Ôò£¨a-b£©2£¾0£¬ËùÒÔa2+b2£¾2ab£®
²ÄÁÏÈý£ºÈç¹ûÒ»¸öÊýµÄƽ·½µÈÓÚm£¬ÄÇôÕâ¸öÊý½Ð×ömµÄƽ·½¸ù£¨square root£©£®Ò»¸öÕýÊýÓÐÁ½¸öƽ·½¸ù£¬ËüÃÇ»¥ÎªÏà·´Êý£®0µÄƽ·½¸ùÊÇ0£¬¸ºÊýûÓÐƽ·½¸ù£®
ÎÊÌ⣺
£¨1£©Èô¡°¸ùºÅº¯Êý¡±Êýѧ¹«Ê½ÔÚµÚÒ»ÏóÏÞÄڵĴóÖÂͼÏóÈçͼËùʾ£¬ÊÔÔÚÍø¸ñÄÚ»­³ö¸Ãº¯ÊýÔÚµÚÈýÏóÏÞÄڵĴóÖÂͼÏó£»
£¨2£©Çë¸ù¾Ý²ÄÁ϶þ¡¢Èý¸ø³öµÄÐÅÏ¢£¬ÊÔ˵Ã÷£ºµ±x£¾0ʱ£¬º¯ÊýÊýѧ¹«Ê½µÄ×îСֵΪ2£®

½â£º£¨1£©¸ù¾Ý²ÄÁÏÒ»£¬º¯ÊýµÄͼÏó¹ØÓÚÔ­µãÖÐÐĶԳƣ¬¿ÉµÃº¯ÊýͼÏó£º
£¨2£©¡ßx£¾0£¬
¡ày==£¬
ÓÖ¡ßx2+-2x•=£¨x-£©2¡Ý0£¬
¡àx2+¡Ý2£¬
¡ày==¡Ý=2£¬
¼´y¡Ý2£¬
¡àº¯ÊýµÄ×îСֵΪ2£®
·ÖÎö£º£¨1£©¸ù¾Ý²ÄÁÏÒ»£¬º¯ÊýµÄͼÏó¹ØÓÚÔ­µãÖÐÐĶԳƣ¬¿ÉµÃº¯ÊýͼÏó£»
£¨2£©½«»¯Îªy==£¬ÔÙ¸ù¾Ý²ÄÁ϶þ¡¢ÈýËù¸øÌõ¼þ½â´ð£®
µãÆÀ£º±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣬¶Á¶®²ÄÁϲ¢¼ÓÒÔÔËÓÃÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁϺó»Ø´ðÎÊÌ⣺
ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªxÖáÉϵÄÁ½µãA£¨x1£¬0£©£¬B£¨x2£¬0£©µÄ¾àÀë¼Ç×÷|AB|=|x1-x2|£¬Èç¹ûA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇƽÃæÉÏÈÎÒâÁ½µã£¬ÎÒÃÇ¿ÉÒÔͨ¹ý¹¹ÔìÖ±½ÇÈý½ÇÐÎÀ´ÇóA¡¢B¼äµÄ¾àÀ룮
Èçͼ£¬¹ýA¡¢BÁ½µã·Ö±ðÏòxÖá¡¢yÖá×÷´¹ÏßAM1¡¢AN1ºÍBM2¡¢BN2£¬´¹×ã·Ö±ð¼Ç×÷M1£¨x1£¬0£©£¬N1£¨0£¬y1£©¡¢M2£¨x2£¬0£©£¬N2£¨0£¬y2£©£¬Ö±ÏßAN1ÓëBM2½»ÓÚQµã£®
ÔÚRt¡÷ABQÖУ¬|AB|2=|AQ|2+|QB|2£¬¡ß|AQ|=|M1M2|=|x2-x1|£¬|BQ|=|N1N2|=|y2-y1|
¡à|AB|2=|x2-x1|2+|y2-y1|2Óɴ˵ÃÈÎÒâÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ö®¼äµÄ¾àÀ빫ʽ£º|AB|=
|x2-x1|2+|y2-y1|2

Èç¹ûijԲµÄÔ²ÐÄΪ£¨0£¬0£©£¬°ë¾¶Îªr£®ÉèP£¨x£¬y£©ÊÇÔ²ÉÏÈÎÒ»µã£¬¸ù¾Ý¡°Ô²ÉÏÈÎÒ»µãµ½¶¨µã£¨Ô²ÐÄ£©µÄ¾àÀ붼µÈÓÚ¶¨³¤£¨°ë¾¶£©¡±£¬ÎÒÃDz»Äѵõ½|PO|=r£¬¼´
(x-0)2+(y-0)2
=r
£¬ÕûÀíµÃ£ºx2+y2=r2£®ÎÒÃdzƴËʽΪԲÐÄÔÚ¾«Ó¢¼Ò½ÌÍøÔ­µã£¬°ë¾¶ÎªrµÄÔ²µÄ·½³Ì£®
£¨1£©Ö±½ÓÓ¦ÓÃƽÃæÄÚÁ½µã¼ä¾àÀ빫ʽ£¬ÇóµãA£¨1£¬-3£©£¬B£¨-2£¬1£©Ö®¼äµÄ¾àÀ룻
£¨2£©Èç¹ûÔ²ÐÄÔÚµãP£¨2£¬3£©£¬°ë¾¶Îª3£¬Çó´ËÔ²µÄ·½³Ì£®
£¨3£©·½³Ìx2+y2-12x+8y+36=0ÊÇ·ñÊÇÔ²µÄ·½³Ì£¿Èç¹ûÊÇ£¬Çó³öÔ²ÐÄ×ø±êÓë°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏÔٻشðÎÊÌ⣺
¶ÔÓÚº¯Êýy=x2£¬µ±x=1ʱ£¬y=1£¬µ±x=-1ʱ£¬y=1£»µ±x=2ʱ£¬y=4£¬µ±x=-2ʱ£¬y=4£»¡­
¶øµã£¨1£¬1£©Ó루-1£¬1£©£¬£¨2£¬4£©Ó루-2£¬4£©£¬¡­£¬¶¼¹ØÓÚyÖá¶Ô³Æ£®ÏÔÈ»£¬Èç¹ûµã£¨x0£¬y0£©ÔÚº¯Êýy=x2µÄͼÏóÉÏ£¬ÄÇô£¬Ëü¹ØÓÚyÖá¶Ô³ÆµÄµã£¨-x0£¬y0£©Ò²ÔÚº¯Êýy=x2µÄͼÏóÉÏ£¬Õâʱ£¬ÎÒÃÇ˵º¯Êýy=x2¹ØÓÚyÖá¶Ô³Æ£®
Ò»°ãµØ£¬Èç¹û¶ÔÓÚÒ»¸öº¯Êý£¬µ±×Ô±äÁ¿xÔÚÔÊÐí·¶Î§ÄÚȡֵʱ£¬Èôx=x0ºÍx=-x0ʱ£¬º¯ÊýÖµ¶¼ÏàµÈ£¬ÎÒÃÇ˵º¯ÊýµÄͼÏó¹ØÓÚyÖá¶Ô³Æ£®
ÎÊÌ⣺
£¨1£©¶ÔÓÚº¯Êýy=x3£¬µ±×Ô±äÁ¿xÈ¡Ò»¶ÔÏà·´Êýʱ£¬º¯ÊýÖµÒ²µÃµ½Ò»¶ÔÏà·´Êý£¬Ôòº¯Êýy=x3µÄͼÏó¹ØÓÚ
Ô­µã
Ô­µã
¶Ô³Æ£®£¨¡°xÖᡱ¡¢¡°yÖᡱ»ò¡°Ô­µã¡±£©£®
£¨2£©ÏÂÁк¯Êý£º¢Ùy=x3+2x£»¢Úy=2x4+4x2£»¢Ûy=x+
1
x
£»¢Üy=-x-2 ÖУ¬ÆäͼÏó¹ØÓÚyÖá¶Ô³ÆµÄÓÐ
¢Ú¢Ü
¢Ú¢Ü
£¬¹ØÓÚÔ­µã¶Ô³ÆµÄÓÐ
¢Ù¢Û
¢Ù¢Û
£¨Ö»ÌîÐòºÅ£©£®
£¨3£©ÇëÄãд³öÒ»¸öÎÒÃÇѧ¹ýµÄº¯Êý¹Øϵʽ
y=
k
x
£¨k¡Ù0£©
y=
k
x
£¨k¡Ù0£©
£¬ÆäͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£¬»Ø´ðÎÊÌ⣮
¡¾²ÄÁÏ1¡¿³Ë»ýÊÇ1µÄÁ½¸öÊý»¥Îªµ¹Êý£¬¼´
a
b
Óë
b
a
»¥Îªµ¹Êý£¬Ò²¾ÍÊÇ˵£¬a¡Âb=x£®Ôòb¡Âa=
1
x
£®
¡¾²ÄÁÏ2¡¿³Ë·¨·ÖÅäÂÉ£ºÒ»¸öÊýͬÁ½¸öÊýµÄºÍÏà³Ë£¬µÈÓÚ°ÑÕâ¸öÊý·Ö±ðͬÕâÁ½¸öÊýÏà³Ë£¬ÔÙ°ÑËùµÃµÄ»ýÏà¼Ó£¬¼´£¨a+b£©c=ac+bc£®
ÀûÓÃÉÏÊö²ÄÁÏ£¬ÇɽâÏÂÌ⣺(-
1
30
)¡Â(
2
3
-
1
10
+
1
6
-
2
5
)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

£¨1£©ÔĶÁÒÔÏÂÄÚÈÝ£º
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
¡­

¢Ù¸ù¾ÝÒÔÉϹæÂÉ£¬¿ÉµÃ£¨x-1£©£¨xn+xn-1+xn-2+¡­+x+1£©=
xn+1-1
xn+1-1
£¨nΪÕýÕûÊý£©£»
¢Ú¸ù¾ÝÕâÒ»¹æÂÉ£¬¼ÆË㣺1+2+22+23+24+¡­22011+22012+22013=
22014-1
22014-1
£®
£¨2£©ÔĶÁÏÂÁвÄÁÏ£¬»Ø´ðÎÊÌ⣺
¹ØÓÚxµÄ·½³Ì£ºx+
1
x
=a+
1
a
µÄ½âÊÇx1=a£¬x2=
1
a
£»x+
2
x
=a+
2
a
µÄ½âÊÇx1=a£¬x2=
2
a
£»x+
3
x
=a+
3
a
µÄ½âÊÇx1=a£¬x2=
3
a
£»
¡­
¢ÙÇë¹Û²ìÉÏÊö·½³ÌÓë½âµÄÌØÕ÷£¬²ÂÏë¹ØÓÚxµÄ·½³Ìx+
m
x
=a+
m
a
(m¡Ù0)
µÄ½â£»
¢ÚÇëÄãд³ö¹ØÓÚxµÄ·½³Ìx+
2
x-3
=m+
2
m-3
µÄ½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

¾«Ó¢¼Ò½ÌÍøÔĶÁÏÂÁвÄÁÏ£¬»Ø´ðÎÊÌ⣮
²ÄÁÏÒ»£ºÈËÃÇÏ°¹ß°ÑÐÎÈçy=x+
k
x
(k£¾0)
µÄº¯Êý³ÆΪ¡°¸ùºÅº¯Êý¡±£¬ÕâÀຯÊýµÄͼÏó¹ØÓÚÔ­µãÖÐÐĶԳƣ®
²ÄÁ϶þ£º¶ÔÈÎÒâµÄʵÊýa¡¢b¶øÑÔ£¬a2-2ab+b2=£¨a-b£©2¡Ý0£¬¼´a2+b2¡Ý2ab£®
Ò×Öªµ±a=bʱ£¬£¨a-b£©2=0£¬¼´£ºa2-2ab+b2=0£¬ËùÒÔa2+b2=2ab£®
Èôa¡Ùb£¬Ôò£¨a-b£©2£¾0£¬ËùÒÔa2+b2£¾2ab£®
²ÄÁÏÈý£ºÈç¹ûÒ»¸öÊýµÄƽ·½µÈÓÚm£¬ÄÇôÕâ¸öÊý½Ð×ömµÄƽ·½¸ù£¨square root£©£®Ò»¸öÕýÊýÓÐÁ½¸öƽ·½¸ù£¬ËüÃÇ»¥ÎªÏà·´Êý£®0µÄƽ·½¸ùÊÇ0£¬¸ºÊýûÓÐƽ·½¸ù£®
ÎÊÌ⣺
£¨1£©Èô¡°¸ùºÅº¯Êý¡±y=x+
1
x
ÔÚµÚÒ»ÏóÏÞÄڵĴóÖÂͼÏóÈçͼËùʾ£¬ÊÔÔÚÍø¸ñÄÚ»­³ö¸Ãº¯ÊýÔÚµÚÈýÏóÏÞÄڵĴóÖÂͼÏó£»
£¨2£©Çë¸ù¾Ý²ÄÁ϶þ¡¢Èý¸ø³öµÄÐÅÏ¢£¬ÊÔ˵Ã÷£ºµ±x£¾0ʱ£¬º¯Êýy=x+
1
x
µÄ×îСֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸