A. | 10 | B. | 14 | C. | 10或14 | D. | 8或10 |
分析 先根据一元二次方程的解的定义把x=2代入方程求出m得到原方程为x2-8x+12=0,再解此方程得到得x1=2,x2=6,然后根据三角形三边的关系得到△ABC的腰为6,底边为2,再计算三角形的周长.
解答 解:把x=2代入方程得4-4m+3m=0,解得m=4,
则原方程为x2-8x+12=0,
解得x1=2,x2=6,
因为这个方程的两个根恰好是等腰△ABC的两条边长,
①当△ABC的腰为6,底边为2,则△ABC的周长为6+6+2=14;
②当△ABC的腰为2,底边为6时,不能构成三角形.
综上所述,该三角形的周长的14.
故选:B.
点评 本题考查了一元二次方程的解,等腰三角形的性质及三角形的三边关系定理.难度中等.根据等腰三角形的性质,将腰长进行分类是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com