分析 (1)由条件可求得a、b的值,则可求得A、B两点的坐标,再由平移可求得C点坐标;
(2)①用t可分别表示出CM和AN,由条件可得到关于t不等式,可求得t的取值范围;②用t表示出四边形MNOB和四边形MNAC的面积,由条件得到t的不等式,再结合t的取值范围进行判定即可.
解答 解:
(1)∵$\sqrt{a-2b-18}$+|2a-5b-30=0,且$\sqrt{a-2b-18}$≥0,|2a-5b-30|≥0,
∴$\left\{\begin{array}{l}{a-2b-18=0}\\{2a-5b-30=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{a=30}\\{b=6}\end{array}\right.$,
∴A(30,0),B(0,6),
又∵点C是由点B向右平移26个单位长度得到,
∴C(26,6);
(2)①由(1)可知:OA=30,
∵点M从点C向右以1.5个单位长度/秒运动,点N从点O向点A以2个单位长度/秒运动,
∴CM=1.5t,ON=2t,
∴AN=30-2t
∵CM<AN,
∴1.5t<30-2t,解得t<$\frac{60}{7}$,而0<t<15,
∴0<t<$\frac{60}{7}$;
②由题意可知CM=1.5t,ON=2t,
∴BM=BC-CM=26-1.5t,AN=30-2t,
又B(0,6),
∴OB=6,
∴S四边形MNOB=$\frac{1}{2}$OB(BM+ON)=3(26-1.5t+2t)=3(26+0.5t),S四边形MNAC=$\frac{1}{2}$OB(AN+CM)=3(30-2t+1.5t)=3(30-0.5t),
当S四边形MNOB>2S四边形MNAC时,则有3(26+0.5t)>2×3(30-0.5t),解得t>$\frac{68}{3}$>15,
∴不存在使S四边形MNOB>2S四边形MNAC的时间段.
点评 本题为动态几何问题,涉及知识点有非负数的性质、平移的性质、梯形的面积等.在(1)中求得a、b的值是解题的关键,在(2)中用t表示出相应线段的长度是解题的关键.本题考查知识点相对较少,难度不大.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 60° | B. | 65° | C. | 70° | D. | 75° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 120° | B. | 130° | C. | 140° | D. | 150° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5$\sqrt{2}$ | B. | $\frac{25}{4}$πcm2 | C. | $\frac{25}{2}$πcm2 | D. | 5πcm2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 12 | B. | 8 | C. | 4 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com