精英家教网 > 初中数学 > 题目详情
14.在△ABC中,边AB、AC的垂直平分线交于点P,
求证:点P在△ABC的垂直平分线上.

分析 根据线段垂直平分线的性质得到PA=PB,PA=PC,等量代换得到PB=PC,于是得到点P在△ABC的边BC的垂直平分线上.

解答 解:∵边AB、AC的垂直平分线交于点P,
∴PA=PB,PA=PC,
∴PB=PC,
∴点P在△ABC的边BC的垂直平分线上,
∴点P在△ABC的垂直平分线上.

点评 本题考查了线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.平面直角坐标系中,△ABC的位置如图所示,已知OA=2OB,BC=5,△ABC的面积为5.
(1)求△ABC的三个顶点的坐标;
(2)若P(a,2)是第一象限内一点,且△PAC的面积等于△ABC的面积,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:
(1)$\frac{a+2}{{a}^{2}-2a+1}$•$\frac{{a}^{2}-4a+4}{a+1}$÷$\frac{{a}^{2}-4}{{a}^{2}-1}$;
(2)$\frac{{x}^{2}-1}{{x}^{2}-2x+1}$÷$\frac{x+1}{x-1}$•$\frac{1-x}{1+x}$;
(3)(-$\frac{-y}{{x}^{2}}$)3
(4)$\frac{{x}^{4}-{y}^{4}}{x-y}$÷($\frac{{x}^{2}+{y}^{2}}{x+y}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某乒乓球馆使用发球机进行辅助训练,假设发球机每次发出的乒乓球的运动路线是固定不变的,在乒乓球运行时,设乒乓球与发球机的水平距离为x(米),与桌面的高度为y(米),经多次测试后,得到如下数据:
 x(米) 0 0.4 0.8 1 2 3.2
 y(米) 1 1.08 1.12 1.125 1 0.52
(1)把上表中x,y的各组对应值作为点的坐标,在平面直角坐标系中描出相应的点,猜想y与x的函数解析式,并求出函数关系式;
(2)乒乓球经发球机发出后,最高点离地面多少米?
(3)当球拍触球时,球离地面的高度为$\frac{5}{8}$米.
①此时发球机与球的水平距离;
②现将发球机向后平移了0.4米,为确保球拍在原位置接到,发球机需调高多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.若关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=-3,x2=2,求方程m(x+h-3)2+k=0的解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.现有1,2,…,48,49这49个连续的正整数,从中选取n个数围成一个圈,如果圈上任意相邻的两个数的乘积都小于100,则n的最大值是(  )
A.17B.16C.18D.19

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,四边形ABCD是⊙O的内接四边形,延长DC,AB交于点E,且BE=BC.
(1)求证:△ADE是等腰三角形;
(2)若∠D=90°,⊙O的半径为5,BC:DC=1:$\sqrt{2}$,求△CBE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图正方形网格中,sin∠ABC的值为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)-6+(-4)-(-2)
(2)(-$\frac{3}{7}$)×0.125×(-2$\frac{1}{3}$)×(-8)
(3)(-24)÷4+(-5)×(-3)+1        
(4)(-30)×($\frac{1}{3}$-$\frac{5}{6}$-$\frac{3}{10}$)
(5)-14-$\frac{1}{6}$×[2-(-3)2].

查看答案和解析>>

同步练习册答案