精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是⊙O的内接正方形,P是弧AB的中点,PD与AB交于E点,则=   
【答案】分析:如何构成线段的比是难点.根据垂径定理,连接OP后有OP∥AD,可构成比例线段求解.
解答:解:连接OP,交AB于点F.
根据垂径定理的推论,得OP⊥AB,AF=BF.
根据90°的圆周角所对的弦是直径,则AC为直径.
设正方形的边长是1,则AC=,圆的半径是
根据正方形的性质,得∠OAF=45°.
所以OF=,PF=
∵OP∥AD,
==
点评:此题综合运用了正方形的性质、垂径定理以及平行线分线段成比例定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案