【题目】四川省芦山县4月20日发生了7.0级强烈地震,政府为了尽快搭建板房安置灾民,给某厂下达了生产A种板材48000m2和B种板材24000m2的任务.
⑴如果该厂安排280人生产这两种板材,每人每天能生产A种板材60 m2或B种板材40 m2,请问:应分别安排多少人生产A种板材和B种板材,才能确保同时完成各自的生产任务?
⑵某灾民安置点计划用该厂生产的两种板材搭建甲、乙两种规格的板房共400间,已知建设一间甲型板房和一间乙型板房所需板材及安置人数如下表所示:
板房 | A种板材(m2) | B种板材(m2) | 安置人数 |
甲型 | 110 | 61 | 12 |
乙型 | 160 | 53 | 10 |
①共有多少种建房方案可供选择?
②若这个灾民安置点有4700名灾民需要安置,这400间板房能否满足需要?若不能满足请说明理由;若能满足,请说明应选择什么方案.
【答案】(1)安排160人生产A种板材,安排120人生产B种板材;(2)①共有31种建房方案可供选择;②建甲型350间,建乙型50间能满足需要
【解析】
(1)(1)设安排x人生产A种板材,则安排(280-x)人生产B种板材,根据题意可列分式方程,即可进行求解;(2)①设建甲型m间,则建乙型(400-m)间,根据题意列出不等式组,即可求出m的取值,即可得到方案的个数;②由题意,得12m+10(400-m)≥4700
解得m≥350 ,再根据①所求,即可判断.
解:(1)设安排x人生产A种板材,则安排(280-x)人生产B种板材
根据题意,得
解得x=160
经检验x=160是原方程的根,240-x=120
∴安排160人生产A种板材,安排120人生产B种板材
(2)设建甲型m间,则建乙型(400-m)间
①根据题意,得
解得320≤m≤350
∵m是整数
∴符合条件的m值有31个
∴共有31种建房方案可供选择
②这400间板房能满足需要
由题意,得12m+10(400-m)≥4700
解得m≥350
∵320≤m≤350
∴m=350
∴建甲型350间,建乙型50间能满足需要
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=m,BC=8,E为线段BC上的动点(不与B,C重合),连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y,若,当DEF为等腰三角形时,m的值为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.
(1)求AO的长;
(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;
(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点G在正方形ABCD的对角线AC上,,垂足为点E,,垂足为点F.
发现问题:在图中,的值为______.
探究问题:将正方形CEGF绕点C顺时针方向旋转角,如图所示,探究线段AG与BE之间的数量关系,并证明你的结论.
解决问题:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图所示,延长CG交AD于点H;若,,直接写出BC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=____.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线L:y=ax2+bx﹣1.5(a>0)与x轴交于点A(-1,0)和点B,顶点为M,对称轴为直线l:x=1.
(1)直接写出点B的坐标及一元二次方程ax2+bx﹣1.5=0的解.
(2)求抛物线L的解析式及顶点M的坐标.
(3)如图2,设点P是抛物线L上的一个动点,将抛物线L平移.使它的頂点移至点P,得到新抛物线L′,L′与直线l相交于点N.设点P的横坐标为m
①当m=5时,PM与PN有怎样的数量关系?请说明理由.
②当m为大于1的任意实数时,①中的关系式还成立吗?为什么?
③是否存在这样的点P,使△PMN为等边三角形?若存在.请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E是CD的中点,点F是BC上的一点,且BF=3CF,连接AE、AF、EF,下列结论:①△ADE∽△ECF,②∠DAE=∠EAF,③AE2=ADAF,④S△AEF=5S△ECF,其中正确结论的个数是( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线不经过第四象限,且与轴,轴分别交于两点,点为的中点,点在线段上,其坐标为,连结,,若,那么的值为( )
A. B. 4C. 5D. 6
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com