精英家教网 > 初中数学 > 题目详情

【题目】正方形ABCD中,对角线AC、BD交于O,QCD上任意一点,AQBDM,过MMN⊥AMBCN,连AN、QN.下列结论:①MA=MN;②∠AQD=∠AQN; ③SAQN=S五边形ABNQD;④QN是以A为圆心,以AB为半径的圆的切线.其中正确的结论有(  )

A. ①②③④ B. 只有①③④ C. 只有②③④ D. 只有①②

【答案】A

【解析】

延长CDF,使DF=BN,连接AF,过AAHNQH,证A B N M四点共圆,推出∠ANM=NAM即可判断①;证ABN≌△ADF,推出AF=AN,FAD=BAN,证NAQ≌△FAQ,推出∠AQN=AQD即可判断②;证ADQ≌△AHQ,即可推出③;根据AH=AD=AB,AHNQ,即可判断④

延长CDF,使DF=BN,连接AF,过AAHNQH,

∵正方形ABCD,NMAQ,

∴∠AMN=ABC=90°,

A B N M四点共圆,

∴∠NAM=DBC=45°,ANM=ABD=45°,

∴∠ANM=NAM=45°,

MA=MN,∴①正确;

∵正方形ABCD,

∴∠ABN=ADF=90°,AD=AB,

ABNADF

∴△ABN≌△ADF,

∴∠FAD=BAN,AF=AN,

∵∠NAM=BAC=45°,

∴∠FAQ=FAD+DAQ=45°=NAQ,

NAQFAQ

∴△NAQ≌△FAQ,

∴∠AQN=AQD,∴②正确;

ADQAHQ

∴△ADQ≌△AHQ,

SADQ=SAQH

SNAQ=SFAQ=SFAD+SADQ=S五边形ABNQD

∴③正确;

AH=AD=AB,AHNQ,

QN是以A为圆心,以AB为半径的圆的切线,

∴④正确.

故选:A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】老师在讲完乘法公式的多种运用后,要求同学们运用所学知识解答:求代数式的最小值?同学们经过交流、讨论,最后总结出如下解答方法:

解:

时,的值最小,最小值是0

时,的值最小,最小值是1

的最小值是1.

请你根据上述方法,解答下列各题

1)当x=______时,代数式的最小值是______

2)若,当x=______时,y有最______值(填),这个值是______

3)若,求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e.

(1)若a+e=0,则代数式b+c+d=  

(2)若a是最小的正整数,先化简,再求值:

(3)若a+b+c+d=2,数轴上的点M表示的实数为m(ma、b、c、d、e不同),且满足MA+MD=3,则m的范围是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线A(2,3),B(4,3),C(6,﹣5)三点.

(1)求抛物线的表达式;

(2)如图,抛物线上一点D在线段AC的上方,DEABAC于点E,若满足,求点D的坐标;

(3)如图②,F为抛物线顶点,过A作直线lAB,若点P在直线l上运动,点Qx轴上运动,是否存在这样的点PQ,使得以BPQ为顶点的三角形与ABF相似,若存在,求PQ的坐标,并求此时BPQ的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程的两个根是,那么,反过来,如果,那么以为两根的一元二次方程是.请根据以上结论,解决下列问题:

(1)已知关于x的方程+mx+n=0(n≠0),求出个一元二次方程,使它的两根分别是已知方程两根的倒数.

(2)已知a、b满足-15a-5=0,-15b-5=0,求的值.

(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数C的最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

在学习可化为一元一次方程的分式方程及其解法的过程中,老师提出一个问题:若关于x的分式方程=1的解为正数,求a的取值范围.

经过独立思考与分析后,小杰和小哲开始交流解题思路如下:

小杰说:解这个关于x的分式方程,得x=a+4.由题意可得a+4>0,所以a>﹣4,问题解决.

小哲说:你考虑的不全面,还必须保证x≠4,即a+4≠4才行.

(1)请回答:   的说法是正确的,并简述正确的理由是   

(2)参考对上述问题的讨论,解决下面的问题:

若关于x的方程的解为非负数,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,点C是弧BD的中点,CE⊥AB于点F.

(1)求证:BF=CF;

(2)若CD=3cm,AC=4cm,求⊙O的半径及CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,是原点,的角平分线.

确定所在直线的函数表达式;

在线段上是否有一点,使点轴和轴的距离相等,若存在,求出点的坐标;若不存在,请说明理由;

在线段上是否有一点,使点到点和点的距离相等,若存在,直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=kx+bx轴于点A,交y轴于点B,直线y=2x4x轴于点D,与直线AB相交于点C32).

1)根据图象,写出关于x的不等式2x4kx+b的解集;

2)若点A的坐标为(50),求直线AB的解析式;

3)在(2)的条件下,求四边形BODC的面积.

查看答案和解析>>

同步练习册答案