精英家教网 > 初中数学 > 题目详情
(2012•黄浦区二模)如图,在Rt△ACB中,∠ACB=90°,点O在AB上,且CA=CO=6,cos∠CAB=
13
,若将△ACB绕点A顺时针旋转得到Rt△AC′B′,且C′落在CO的延长线上,连接BB′交CO的延长线于点F,则BF=
14
14
分析:过C作CD⊥AB于点D,根据等腰三角形三线合一的性质可得AD=DO,然后根据∠CAB的余弦值列式求出AB、AD的值,再求出AO的值,根据BO=AB-AO代入数据求出BO,然后根据旋转的性质可得AC=AC′,AB=AB′,再根据旋转角得到∠CAC′=∠BAB′,然后根据三角形的内角和定理求出∠ABB′=∠ACC′,从而求出∠BOF=∠BFO,根据等角对等边的性质可得BF=BO,从而得解.
解答:解:过C作CD⊥AB于点D,
∵CA=CO,
∴AD=DO,
在Rt△ACB中,cos∠CAB=
1
3
=
AC
AB
=
6
AB

∴AB=3AC=18,
在Rt△ADC中:cos∠CAB=
1
3
=
AD
AC

∴AD=
1
3
AC=2,
∴AO=2AD=4,
∴BO=AB-AO=18-4=14,
∵△AC′B′是由△ACB旋转得到,
∴AC=AC′,AB=AB′,∠CAC′=∠BAB′,
∵∠ACC′=
1
2
(180°-∠CAC′),∠ABB′=
1
2
(180°-∠BAB′),
∴∠ABB′=∠ACC′,
∴在△CAO和△BFO中,∠BFO=∠CAO,
∵CA=CO,
∴∠COA=∠CAO,
又∵∠COA=∠BOF(对顶角相等),
∴∠BOF=∠BFO,
∴BF=BO=14.
故答案为:14.
点评:本题考查了旋转的性质,等腰三角形三线合一的性质,三角形的内角和定理,以及锐角三角函数的应用,求出BO的长度之后,难点在于求BF=BO.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•黄浦区二模)如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不与端点重合),M是OB边上的点,且MN∥AO,延长CA与直线MN相交于点D,G点是AB延长线上的点,且BG=AN,连接MG,设AN=x,BM=y.
(1)求y关于x的函数关系式及其定义域;
(2)连接CN,当以DN为半径的⊙D和以MG为半径的⊙M外切时,求∠ACN的正切值;
(3)当△ADN与△MBG相似时,求AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄浦区二模)某公司组织员工100人外出旅游.公司制定了三种旅游方案供员工选择:
方案一:到A地两日游,每人所需旅游费用1500元;
方案二:到B地两日游,每人所需旅游费用1200元;
方案三:到C地两日游,每人所需旅游费用1000元;
每个员工都选择了其中的一个方案,现将公司员工选择旅游方案人数的有关数据整理后绘制成尚未完成的统计图,根据图1与图2提供的信息解答下列问题:

(1)选择旅游方案三的员工有
35
35
人,将图1补画完整;
(2)选择旅游方案三的女员工占女员工总数的
5
12
5
12
(填“几分之几”);
(3)该公司平均每个员工所需旅游费
1205
1205
元;
(4)报名参加旅游的女员工所需旅游费为57200元,参加旅游的女员工有
48
48
人.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄浦区二模)下列函数中,y随x的增大而减小的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄浦区二模)从1,2,3,4,5,6中任意取一个数,取到的数是6的因数的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黄浦区二模)下列命题中,假命题是(  )

查看答案和解析>>

同步练习册答案